Abstract

The properties of dark spatial solitons in a quantum well semiconductor resonator are investigated experimentally and by model calculations. We find experimentally and confirm theoretically that the solitons show local light amplification. The amount of amplification as well as its parameter dependence changes with the character of the nonlinearity (absorptive, dispersive, mixed). Theoretically a new ring-shaped dark soliton is found to exist.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semiconductor resonator solitons above bandgap

Victor B. Taranenko, Carl O. Weiss, and Wolfgang Stolz
J. Opt. Soc. Am. B 19(4) 684-688 (2002)

Spatial solitons in a pumped semiconductor resonator

V. B. Taranenko, C. O. Weiss, and W. Stolz
Opt. Lett. 26(20) 1574-1576 (2001)

Dark soliton fiber lasers

Dingyuan Tang, Jun Guo, Yufeng Song, Han Zhang, Luming Zhao, and Deyuan Shen
Opt. Express 22(16) 19831-19837 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
    [Crossref]
  2. M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
    [Crossref]
  3. V.B. Taranenko and C.O. Weiss, “Spatial solitons in semiconductor microresonators,” IEEE J. Sel. Top. Quantum Electron. 8, N3, 488–496 (2002).
    [Crossref]
  4. A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
    [Crossref]
  5. V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
    [Crossref]
  6. L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
    [Crossref]
  7. R. Kheradmand, L.A. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli, “Rotating and fugitive cavity solitons in semiconductor microresonators,” Opt. Express 11, 3612–3621 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3612
    [Crossref] [PubMed]
  8. C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
    [Crossref] [PubMed]
  9. B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
    [Crossref]
  10. X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
    [Crossref]
  11. V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
    [Crossref]
  12. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
    [Crossref] [PubMed]
  13. R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
    [Crossref] [PubMed]
  14. L. Spinelli and M. Brambilla, “Signal amplification by means of cavity solitons in semiconductor microcavi-ties,” Eur. Phys. J. D 6, 523–532 (1999).
    [Crossref]
  15. B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
    [Crossref]
  16. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
    [Crossref]
  17. V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
    [Crossref]
  18. Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
    [Crossref] [PubMed]

2004 (1)

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

2003 (1)

2002 (5)

V.B. Taranenko and C.O. Weiss, “Spatial solitons in semiconductor microresonators,” IEEE J. Sel. Top. Quantum Electron. 8, N3, 488–496 (2002).
[Crossref]

A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
[Crossref]

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

2001 (3)

B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

2000 (2)

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

1999 (1)

L. Spinelli and M. Brambilla, “Signal amplification by means of cavity solitons in semiconductor microcavi-ties,” Eur. Phys. J. D 6, 523–532 (1999).
[Crossref]

1998 (1)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

1997 (1)

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

1993 (1)

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

1990 (1)

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

1986 (1)

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Ackemann, T.

B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
[Crossref]

Azoulay, R.

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Balle, S.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Banyai, L.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Barland, S.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Brambilla, M.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

R. Kheradmand, L.A. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli, “Rotating and fugitive cavity solitons in semiconductor microresonators,” Opt. Express 11, 3612–3621 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3612
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

L. Spinelli and M. Brambilla, “Signal amplification by means of cavity solitons in semiconductor microcavi-ties,” Eur. Phys. J. D 6, 523–532 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

Chavez-Pirson, A.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Firth, W.J.

A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
[Crossref]

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

Furfaro, L.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

Ganne, I.

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

Gibbs, H.M.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Giudici, M.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Gossard, A.C.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Hachair, X.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

Jaeger, R.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Jeffery, A.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Kheradmand, R.

Knoedl, T.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Koch, S.W.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Kuszelewicz, R.

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Lange, W.

B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
[Crossref]

Lee, Y.H.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Lugiato, L.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

Lugiato, L. A.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Lugiato, L.A.

R. Kheradmand, L.A. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli, “Rotating and fugitive cavity solitons in semiconductor microresonators,” Opt. Express 11, 3612–3621 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3612
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

Maggipinto, T.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

McSloy, J.M.

A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
[Crossref]

Michel, J. C.

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Miller, M.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Morhange, J.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Oudar, J. L.

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Park, S.H.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Per-rini, I.M.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

Peyghambarian, N.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Prati, F.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

Sagnes, I.

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

Schaepers, B.

V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
[Crossref]

B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
[Crossref]

Scroggie, A.J.

A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
[Crossref]

Sfez, B. G.

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Slekys, G.

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

Spinelli, L.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

L. Spinelli and M. Brambilla, “Signal amplification by means of cavity solitons in semiconductor microcavi-ties,” Eur. Phys. J. D 6, 523–532 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

Staliunas, K.

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

Tajalli, H.

Taranenko, V.B.

V.B. Taranenko and C.O. Weiss, “Spatial solitons in semiconductor microresonators,” IEEE J. Sel. Top. Quantum Electron. 8, N3, 488–496 (2002).
[Crossref]

V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

Telle, H. R.

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

Tissoni, G.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

R. Kheradmand, L.A. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli, “Rotating and fugitive cavity solitons in semiconductor microresonators,” Opt. Express 11, 3612–3621 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3612
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

Tredicce, J. R.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Tredicce, J.R.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

Weiss, C.O.

V.B. Taranenko and C.O. Weiss, “Spatial solitons in semiconductor microresonators,” IEEE J. Sel. Top. Quantum Electron. 8, N3, 488–496 (2002).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

Weiss, CO.

V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
[Crossref]

Wiegmann, W.

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

Appl. Phys. B (2)

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Spatial solitons in a semiconductor microresona-tor,” Appl. Phys. B 72, 377–380 (2001).
[Crossref]

Appl. Phys. Lett. (1)

B. G. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849–1851 (1990).
[Crossref]

Eur. Phys. J. D (1)

L. Spinelli and M. Brambilla, “Signal amplification by means of cavity solitons in semiconductor microcavi-ties,” Eur. Phys. J. D 6, 523–532 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V.B. Taranenko and C.O. Weiss, “Spatial solitons in semiconductor microresonators,” IEEE J. Sel. Top. Quantum Electron. 8, N3, 488–496 (2002).
[Crossref]

Nature (1)

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev A (1)

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, “Patterns and localized structures in bistable semiconductor resonator,” Phys. Rev A 61, 063818/1–5 (2000).
[Crossref]

Phys. Rev. A (4)

L. Spinelli, G. Tissoni, L.A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 23817/1–12 (2002).
[Crossref]

C.O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A 47, R1616–R1619 (1993).
[Crossref] [PubMed]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Per-rini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817/1–13 (2004).
[Crossref]

V.B. Taranenko, CO. Weiss, and B. Schaepers, “Coherent and incoherent hexagonal patterns in semiconductor resonators,” Phys. Rev. A 65, 013812 (2002).
[Crossref]

Phys. Rev. A. (1)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavi-ties,” Phys. Rev. A. 58, 2542–2559 (1998).
[Crossref]

Phys. Rev. E (1)

A.J. Scroggie, J.M. McSloy, and W.J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 36607/1–8 (2002).
[Crossref]

Phys. Rev. Lett. (3)

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[Crossref]

Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-Temperature Optical Nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
[Crossref] [PubMed]

R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and mul-tiquantum well GaAlAs microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Schaepers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” Y.B. Band, ed., Proc. SPIE 4271, 130–137 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The domains of soliton existence in the predominantly absorptive regime (wavelength is approximately 870 nm). MI: Modulation Instability domain. Eh is the illuminating field amplitude inside cavity, θ is is the cavity detuning parameter. Parameters DN = 2.32∙10-3, ξ′= 7.96, ξ″= 20.58, Ntr = 1.694 (see model description). Area limited by the dashed line is the plane wave bistability domain. The insets show the calculated intracavity amplitude profile of dark and bright solitons.
Fig. 2.
Fig. 2. Dark solitons in switched areas observed in reflection (see text for details).
Fig. 3.
Fig. 3. Experimental set-up. PBS: polarizer beam splitter, λ/2: halfwave plate, λ/4: quarter-wave plate, L: lens, BS: beam splitter, EOM: electro-optical modulator, PD: photodiode to follow intensity in time in certain points of the patterns. Beam waist placed on the sample surface is 45 μm FWHM in intensity.
Fig. 4.
Fig. 4. Switched structures observable in experiment: intensity reflectivity (reflected intensity/incident intensity) of the sample: (a) bright soliton on the unswitched background (dark spot in reflection); (b) switched area; (c) dark soliton in the switched area (bright spot in reflection); (d) hexagonal pattern of loosely bound individual dark solitons.
Fig. 5.
Fig. 5. Measured reflectivity in the center of dark soliton depending on intensity of the illuminating beam for dispersive regime (882 nm curve) and mixed absorptive-dispersive regime (curve for 871 nm).
Fig. 6.
Fig. 6. Measured reflectivity at the center of dark soliton in dependence on illuminating light intensity at different pump powers. Measurements at 860 nm wavelength of illuminating light. The solid lines serve to guide the eye.
Fig. 7.
Fig. 7. Domains of soliton existence in the predominantly dispersive regime (wavelength is approximately 890 nm). MI: Modulation Instability domain. Eh is the illuminating field amplitude inside the cavity, θ is the cavity detuning parameter. Area limited by the thick dashed line is the plane wave bistability domain. Inset shows the calculated range of unstable ring dark solitons. Parameters: DN = 2.32∙10-3, ξ∙ = 9.44, ξ″ = 0.81 , Ntr =7.76 .
Fig. 8.
Fig. 8. Calculated reflectivity of dark solitons for plane wave illumination. (a) Reflectivity profile of dark ring soliton (wavelength is ~890 nm), Eh = 0.33 , θ = 10 . (b) Maximal reflectivity of dark soliton vs. illumination intensity for different wavelengths λ.
Fig. 9.
Fig. 9. Calculated reflectivity at the center of a dark soliton for different amplitudes of the Gaussian illumination at a fixed detuning (λ=885 nm). Radii are in μm units. Dashed line is peak reflectivity of the soliton which is unstable at the center of illuminating beam. Parameters: DN = 0.5∙10-3, ξ′ = 13.5, ξ″=1.7, Ntr =2.7.
Fig. 10.
Fig. 10. Calculated reflectivity of dark solitons placed at the center (a) and near the boundary (b) of a switched area illuminated by a beam of Gaussian form with amplitude radius r = 110 μm. (a) Eh =0.357, (b) Eh =0.3642. Parameters: DN = 0.5∙10-3, ξ′ = 13.5, ξ″ = 1.7, Ntr = 2.7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E t = ( 1 + i θ ) · E + iD E 2 E + E h ( i ξ ξ ) · ( N N tr ) ·E
N t = δ N N β N 2 + D N 2 N ξ · ( N N tr ) · E 2 ,

Metrics