Abstract

A novel design for a microstructure fiber (MSF) laser consisting of a large core and a single annulus of 5 air holes is described. The fiber design incorporates a silica core that was doped in the liquid phase with 1300 ppm Nd2O3. The light guiding losses in the structurally very simple MSF are ≈0.7 dB/m. Single transverse mode emission is demonstrated with a mode field area larger than 200 μm2. The laser simultaneously emits at two groups of wavelengths centered at 1060 nm and 1090 nm. Pumped by a cw Ti:sapphire laser, the fiber laser yields a maximum output power of 280 mW (pump power limited) at a slope efficiency of 52%. Our results indicate how the advanced possibilities of MSF’s can be used for optimized fiber laser designs.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cladding pumped large-mode-area Nd-doped holey fiber laser

P. Glas and D. Fischer
Opt. Express 10(6) 286-290 (2002)

All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index

Huifeng Wei, Kangkang Chen, Yucheng Yang, and Jinyan Li
Opt. Express 24(8) 8978-8987 (2016)

Highly efficient ­Tm3+ doped germanate large mode area single mode fiber laser

Fedia Ben Slimen, Shaoxiang Chen, Joris Lousteau, Yongmin Jung, Nicholas White, Shaiful Alam, David J. Richardson, and Francesco Poletti
Opt. Mater. Express 9(10) 4115-4125 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,“ Opt. Lett. 23, 1662–4 (1998).
    [Crossref]
  2. Lin-Ping Shen, Wei-Ping Huang, and Shui-Sheng Jian, “Design of Photonic Crystal Fibers for Dispersion- Related Applications,“ J. Lightwave Technol. 21, 1644–51 (2003).
    [Crossref]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
    [Crossref] [PubMed]
  4. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, “100-W single-frequency master-oscillator fiber power amplifier,“ Opt. Lett. 28, 1537–9 (2003).
    [Crossref] [PubMed]
  5. W. J. Wadsworth et al.: “High power air clad photonic crystal fibre laser,” Opt. Express 11, 48 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-48.
    [Crossref] [PubMed]
  6. J. C. Knight et al.: “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347 (1998).
    [Crossref]
  7. S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
    [Crossref]
  8. W. L. Barnes et al., “Detailed characterization of Nd3+ doped SiO2-GeO2 glass fibre lasers,” Opt. Commun. 82, 282 (1991).
    [Crossref]
  9. B.T. Kuhlmey, T.P. White, G. Renversez, D. Maystre, L. C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,“ J. Opt. Soc. Am. B 19, 2331–40 (2002), http://www.physics.usyd.edu.au/cudos/mofsoftware/.
    [Crossref]
  10. N. A. Mortensen, J.R. Folkenberg, M.D. Nielsen, and K.P. Hansen,” Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879 (2002).
    [Crossref]
  11. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341.
    [PubMed]
  12. J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).
  13. D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).
  14. M. H. Ober, G. Sucha, and M. E. Ferman, “Controllable dual - wavelength operation of a femtosecond neodymium fiber laser,” Opt. Lett. 20, 195–7 (1995).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic Press, San Diego, CA, 1998)

2003 (4)

2002 (4)

1998 (2)

1995 (1)

1993 (1)

J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).

1991 (1)

W. L. Barnes et al., “Detailed characterization of Nd3+ doped SiO2-GeO2 glass fibre lasers,” Opt. Commun. 82, 282 (1991).
[Crossref]

1982 (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic Press, San Diego, CA, 1998)

Barnes, W. L.

W. L. Barnes et al., “Detailed characterization of Nd3+ doped SiO2-GeO2 glass fibre lasers,” Opt. Commun. 82, 282 (1991).
[Crossref]

Bennion, I.

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Birks, T. A.

Botten, L. C.

Burns, D.

J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).

Chen, L. R.

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

de Sterke, C.M.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Evans, J. M.

J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).

Ferman, M. E.

Folkenberg, J.R.

Giannone, D.

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

Hansen, K.P.

Huang, Wei-Ping

Jian, Shui-Sheng

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

J. C. Knight et al.: “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347 (1998).
[Crossref]

Kuhlmey, B.T.

Liem, A.

Limpert, J.

Macchesney, J. B.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Maystre, D.

McPhedran, R.C.

Mogilevtsev, D.

Mortensen, N. A.

Nagel, S. R.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Nielsen, M.D.

Ober, M. H.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Pudo, D.

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Renversez, G.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,“ Opt. Lett. 23, 1662–4 (1998).
[Crossref]

Shen, Lin-Ping

Sibett, W.

J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Spence, D. E.

J. M. Evans, D. E. Spence, D. Burns, and W. Sibett, “Dual-wavelength self-mode-locked Ti:sapphire laser,“ Opt. Lett. 29, 409–11 (1993).

Sucha, G.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Tünnermann, A.

Wadsworth, W. J.

Walker, K. L.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

White, T.P.

Zellmer, H.

Zhang, Lin

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

Electron. Lett. (1)

J. C. Knight et al.: “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance,“ IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Pudo, L. R. Chen, D. Giannone, Lin Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 17, 1 (2002).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,“ Nature 424, 511–5 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

W. L. Barnes et al., “Detailed characterization of Nd3+ doped SiO2-GeO2 glass fibre lasers,” Opt. Commun. 82, 282 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic Press, San Diego, CA, 1998)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Scanning electron microscope image of the end face of the penta fiber. (b) calculated near field of the fundamental HE11 mode.
Fig. 2.
Fig. 2. Experimental set up for optical pumping of the Nd3+ doped microstructure fiber.
Fig. 3.
Fig. 3. (a) Linear cut through the near field intensity distribution at threshold. (b) Cut through the near field intensity distribution about 4 times above threshold. The blue line shows a Gaussian fit indicating a 1/e2-width of w fit = 10 μm.
Fig. 4.
Fig. 4. Input/output characteristics of the penta fiber laser for linearly polarized pump. The red line and hollow symbols show the output for a bent fiber with bend radius of 1.5 cm.
Fig. 5.
Fig. 5. Angular plot of the output of the fiber laser for different orientations a polarizer behind the output of the fiber laser.
Fig. 6.(a)
Fig. 6.(a) Spectrum of the fiber laser just above threshold and (b) 4 times above threshold.
Fig. 7.
Fig. 7. Spatially dispersed output power for both emission wavelengths. The sum of both emissions does not yield the values of Fig. 4, as no correction for grating efficiencies was attempted.
Fig. 8.
Fig. 8. Temporal fluctuations on top of the cw background for the emitted wavelengths at 1060 nm and 1090 nm.

Metrics