Abstract

One- and two-photon interference visibilities observed with the exciton emission from a quantum dot microcavity single-photon source are sensitive to the excitation conditions. In particular, the coherence time of the source is reduced with increasing pump power or excitation of the barrier layers. Furthermore, the two-photon interference visibility is affected by a long lived population of the biexciton state in the dot. This suggests that two-photon interference may be improved by controlling the exciton dynamics in the dot or by improved temporal resolution of the detection set-up.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon interference from a bright single-photon source at telecom wavelengths

Je-Hyung Kim, Tao Cai, Christopher J. K. Richardson, Richard P. Leavitt, and Edo Waks
Optica 3(6) 577-584 (2016)

Two-photon interference in an atom–quantum dot hybrid system

Hüseyin Vural, Simone L. Portalupi, Julian Maisch, Simon Kern, Jonas H. Weber, Michael Jetter, Jörg Wrachtrup, Robert Löw, Ilja Gerhardt, and Peter Michler
Optica 5(4) 367-373 (2018)

Generation of two-photon noon state and polarization-entangled state from a single quantum dot embedded inside a microcavity

J. K. Verma, Harmanpreet Singh, and P. K. Pathak
J. Opt. Soc. Am. B 36(5) 1200-1207 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
    [Crossref]
  2. D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
    [Crossref]
  3. J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
    [Crossref]
  4. M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
    [Crossref] [PubMed]
  5. J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [Crossref]
  6. J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
    [Crossref]
  7. J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
    [Crossref]
  8. A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields , “High performance single-photon sources from photolithographically defined pillar microcavities,” Opt. Express 13, 50–55 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50.
    [Crossref] [PubMed]
  9. E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).
  10. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
    [Crossref]
  11. D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
    [Crossref] [PubMed]
  12. D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
    [Crossref] [PubMed]
  13. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
    [Crossref]
  14. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  15. Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
    [Crossref]
  16. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
    [Crossref]
  17. C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
    [Crossref]
  18. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
    [Crossref] [PubMed]
  19. C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
    [Crossref]
  20. C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
    [Crossref]
  21. A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
    [Crossref]

2005 (1)

2004 (5)

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

2003 (2)

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

2002 (4)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

2001 (3)

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
[Crossref] [PubMed]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).

2000 (2)

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

1999 (1)

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

1998 (1)

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
[Crossref]

1981 (1)

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
[Crossref]

Abram, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Arakawa, Y.

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
[Crossref]

Atkinson, P.

Bennett, A. J.

Birkedal, D.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
[Crossref] [PubMed]

Bourennane, M.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

Bouwmeester, D.

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Braeuchle, C

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

Cassabois, G.

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Daniell, M.

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

Delalande, C.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

Diamanti, E.

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

Ehrl, M

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

Eibl, M.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

Forchel, A.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Gaertner, S.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

Gasparoni, S.

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

Gérard, J. M.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
[Crossref]

Hvam, J. M.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
[Crossref] [PubMed]

Inoue, K.

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

Kammerer, C.

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Kiraz, A

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

Klopf, F.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Knill, E.

E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).

Kurtseifer, C.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

LaFlamme, R.

E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).

Leosson, K.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
[Crossref]

Manin, L.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Mattle, K.

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

Milburn, G. J.

E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).

Moreau, E.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Moriwaki, O.

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

Nishioka, M.

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
[Crossref]

Pan, J-W.

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Perrin, M.

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Reithmaier, J. P.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Ritchie, D. A.

Robert, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
[Crossref]

Roussignol, Ph.

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Shields, A. J.

Solomon, G. S.

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Solomon, G.S

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Toda, Y.

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

Unitt, D. C.

Ursin, R.

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

Voisin, C.

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Weihs, G.

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

Weinfurter, H.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Yamamoto, Y.

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zeilinger, A.

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zukowski, M.

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

Zumbusch, A

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

Appl. Phys. Lett. (4)

J. Vučković, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, “Interferometric correlation spectroscopy in single quantum dots,” Appl. Phys. Lett. 81, 2737–2740, (2002).
[Crossref]

A Kiraz, M Ehrl, C Braeuchle, and A Zumbusch, “Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules,” Appl. Phys. Lett. 85, 920–922, (2004).
[Crossref]

Nature (London) (5)

E. Knill, R. LaFlamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 46, 409–412 (2001).

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London) 419, 594–597 (2002).
[Crossref]

J-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–420 (2004).
[Crossref]

D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–578 (2000).
[Crossref]

J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515–918 (2000).
[Crossref]

New J. Phys. (1)

C. Santori, D. Fattal, J. Vučković, G.S Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 1–16, (2004).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J. M. Gérard, “Line narrowing in single semiconductor quantum dots: toward the control of environment effects,” Phys. Rev. B 66, 041306(R) (2002).
[Crossref]

Phys. Rev. Lett. (9)

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401–227404 (2001).
[Crossref] [PubMed]

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460463 (1981).
[Crossref]

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtseifer, M. Zukowski, and H. Weinfurter, “Experimental observation of four-photon entanglement from parametric down-conversion,” Phys. Rev. Lett. 90, 200403 (2003).
[Crossref] [PubMed]

J-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref] [PubMed]

D. Fattal, K. Inoue, J. Vučković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single-photon source,” Phys. Rev. Lett. 92, 037903(2004).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, “Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states,” Phys. Rev. Lett. 82, 4114–4117, (1999).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 57, 2044–2047 (1987).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of the fibre-based interfereometer used in the experiment. (b) Histogram of time between coincidence counts in the two-photon interference experiment when overlap of the photon wave-packets from pillar B is maximised. (c) Measurement of opposite output probability, Popp , as the time delay between the excitation of the two photons is varied. As a guide to the eye we have fitted this data with a function [0.5 - 0.33exp(- |∆τ|/τdecay )].
Fig. 2.
Fig. 2. Measured (solid symbols) opposite output probability, Popp , as a function of excitation power. Also shown, as open symbols, is the predicted Popp determined using independent measurements of the photon coherence times and the radiative decay time of the emission.
Fig. 3.
Fig. 3. (a) Measurements of the coherence time, τcoh , as a function of laser excitation density. The insert shows the single-photon interferogram when the source is at 50% of its saturated intensity. (b) shows the best-fit decay time of the time-resolved photoluminscence measurement as a function of laser power. The insert to (b) shows the decay traces at three powers corresponding to 11, 50 and 100% of the saturated exciton intensity.
Fig. 4.
Fig. 4. Modelled auto-correlation histogram for distinguishable (dotted line) and indistinguishable (solid line) photons that would be recorded with an ideal detection system where τdecay = 230 ps and τcoh = 122 ps.

Metrics