Abstract

Abstract An exposure-schedule theory of uniform diffraction efficiency for a Dynamic-Static speckle multiplexing (DSSM) volume holographic storage system is proposed. The overlap-factor γoverlap is introduced into the system to compensate for the erasure effect of the static speckle multiplexing scheme. The exposure-schedule which is an inverse recursion formula is determined. Experimental results are obtained in a LiNbO3:Fe crystal and 400 holograms with uniform diffraction efficiency are achieved by the use of the new exposure-schedule.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of photorefractive properties and holographic applications of lithium niobate crystal

Yunbo Guo, Yi Liao, Liangcai Cao, Guodong Liu, Qingsheng He, and Guofan Jin
Opt. Express 12(22) 5556-5561 (2004)

Storage of multiple holograms of equal diffraction efficiency in a phase-code multiplexing system

You-Hyun Kim, Seung-Dae Sohn, and Yeon H. Lee
Appl. Opt. 43(10) 2118-2124 (2004)

Investigation on mechanism of multiple holographic recording with uniform diffraction efficiency in photopolymers

Qianli Zhai, Shiquan Tao, Tao Zhang, Xiaoyang Song, and Dayong Wang
Opt. Express 17(13) 10871-10880 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Springer Series in Optical Sciences Vol. 76
  2. K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)
  3. A. Darsky and V.B. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
    [Crossref]
  4. A.M. Darskii and V.B. Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
    [Crossref]
  5. V. B. Markov, “Holographic memory with speckle-wave volume hologram,” SPIE 348668–79 (1997)
    [Crossref]
  6. C.C. Sun and W.C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. opt. 40, 1253–1260 (2001)
    [Crossref]
  7. Q.S. He, J.N. Wang, P.K. Zhang, J.G. Wang, M.X. Wu, and G.F. Jin, “Dynamic speckle multiplexing scheme in volume holographic data storage and its realization,” Opt. Express 11, 366–370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-366
    [Crossref] [PubMed]
  8. J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
    [Crossref]
  9. M.L. Delong, B.D. Duncan, and J.H. Parker, “Parametric extension of the classical exposure-schedule theory for angle-multiplexed photorefractive recording over wide angles,” Applied Optics37, (1998)
    [Crossref]
  10. E.S. Maniloff and K.M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991)
    [Crossref]
  11. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988)
    [Crossref]
  12. W. J. Burke and P Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. App. Phys. 48, 681 (1977)
    [Crossref]

2003 (2)

Q.S. He, J.N. Wang, P.K. Zhang, J.G. Wang, M.X. Wu, and G.F. Jin, “Dynamic speckle multiplexing scheme in volume holographic data storage and its realization,” Opt. Express 11, 366–370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-366
[Crossref] [PubMed]

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

2001 (1)

1998 (1)

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

1997 (1)

V. B. Markov, “Holographic memory with speckle-wave volume hologram,” SPIE 348668–79 (1997)
[Crossref]

1992 (1)

A.M. Darskii and V.B. Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

1991 (2)

A. Darsky and V.B. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

E.S. Maniloff and K.M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991)
[Crossref]

1988 (1)

1977 (1)

W. J. Burke and P Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. App. Phys. 48, 681 (1977)
[Crossref]

Brady, D.

Burke, W. J.

W. J. Burke and P Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. App. Phys. 48, 681 (1977)
[Crossref]

Campbell, S.

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Springer Series in Optical Sciences Vol. 76

Curtis, K.

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Darskii, A.M.

A.M. Darskii and V.B. Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

Darsky, A.

A. Darsky and V.B. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

Delong, M.L.

M.L. Delong, B.D. Duncan, and J.H. Parker, “Parametric extension of the classical exposure-schedule theory for angle-multiplexed photorefractive recording over wide angles,” Applied Optics37, (1998)
[Crossref]

Duncan, B.D.

M.L. Delong, B.D. Duncan, and J.H. Parker, “Parametric extension of the classical exposure-schedule theory for angle-multiplexed photorefractive recording over wide angles,” Applied Optics37, (1998)
[Crossref]

He, Q.S.

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

Q.S. He, J.N. Wang, P.K. Zhang, J.G. Wang, M.X. Wu, and G.F. Jin, “Dynamic speckle multiplexing scheme in volume holographic data storage and its realization,” Opt. Express 11, 366–370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-366
[Crossref] [PubMed]

He, S.R.

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

Hill, A. J.

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Huang, D.

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

Jin, G.F.

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

Q.S. He, J.N. Wang, P.K. Zhang, J.G. Wang, M.X. Wu, and G.F. Jin, “Dynamic speckle multiplexing scheme in volume holographic data storage and its realization,” Opt. Express 11, 366–370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-366
[Crossref] [PubMed]

Johnson, K.M.

E.S. Maniloff and K.M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991)
[Crossref]

Maniloff, E.S.

E.S. Maniloff and K.M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991)
[Crossref]

Markov, V. B.

V. B. Markov, “Holographic memory with speckle-wave volume hologram,” SPIE 348668–79 (1997)
[Crossref]

Markov, V.B.

A.M. Darskii and V.B. Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

A. Darsky and V.B. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

Parker, J.H.

M.L. Delong, B.D. Duncan, and J.H. Parker, “Parametric extension of the classical exposure-schedule theory for angle-multiplexed photorefractive recording over wide angles,” Applied Optics37, (1998)
[Crossref]

Psaltis, D.

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988)
[Crossref]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Springer Series in Optical Sciences Vol. 76

Sheng, P

W. J. Burke and P Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. App. Phys. 48, 681 (1977)
[Crossref]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Springer Series in Optical Sciences Vol. 76

Su, W.C.

Sun, C.C.

Tackitt, M.

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Wagner, K.

Wang, J.G.

Wang, J.N.

Q.S. He, J.N. Wang, P.K. Zhang, J.G. Wang, M.X. Wu, and G.F. Jin, “Dynamic speckle multiplexing scheme in volume holographic data storage and its realization,” Opt. Express 11, 366–370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-366
[Crossref] [PubMed]

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

Wilson, W. L.

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Wu, M.X.

Zhang, P.K.

Appl. opt. (1)

Chin. Phys. Lett. (1)

J.N. Wang, S.R. He, Q.S. He, D. Huang, and G.F. Jin, “Insensitivity of Speckle Multiplexing to Multi-Longitudinal Modes of Laser in Volume Holographic Storage,” Chin. Phys. Lett. 20, 1047 (2003)
[Crossref]

J. App. Phys. (1)

W. J. Burke and P Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. App. Phys. 48, 681 (1977)
[Crossref]

J. Appl. Phys. (1)

E.S. Maniloff and K.M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991)
[Crossref]

Opt. Express (1)

Optical Data Storage (1)

K. Curtis, W. L. Wilson, M. Tackitt, A. J. Hill, and S. Campbell, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” Optical Data Storage 8, OSA Technical Digest Series, pp. 168–170 (1998)

Proc. SPIE (2)

A. Darsky and V.B. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

A.M. Darskii and V.B. Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

SPIE (1)

V. B. Markov, “Holographic memory with speckle-wave volume hologram,” SPIE 348668–79 (1997)
[Crossref]

Other (2)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Springer Series in Optical Sciences Vol. 76

M.L. Delong, B.D. Duncan, and J.H. Parker, “Parametric extension of the classical exposure-schedule theory for angle-multiplexed photorefractive recording over wide angles,” Applied Optics37, (1998)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Geometry of DSSM holographic storage.
Fig. 2.
Fig. 2. Schematic diagram of the DSSM holograms.
Fig. 3.
Fig. 3. Relationship diagram of the overlapped holograms.
Fig. 4.
Fig. 4. Experimental setup.
Fig. 5.
Fig. 5. Experimental result (a) in a LiNbO3:Fe crystal; (b) in LiNbO3:Fe:In crystal.
Fig. 6.
Fig. 6. Experimental result in a LiNbO3:Fe crystal with 20×20 holograms.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S overlap = 2 r 2 cos 1 ( l 2 r ) l r 2 l 2 / 4
γ overlap = S overlap S whole = 2 π cos 1 ( l 2 r ) l π r 2 r 2 l 2 / 4
recording process Δ n = Δ n s [ 1 exp ( t / τ r ) ]
erasin g process Δ n = Δ n exp [ t / ( τ e / γ uv ) ]
Δ n 1 = Δ n s [ 1 exp ( t 1 / τ r ) ] exp [ ( j = 2 M N γ j , 1 t j ) / τ e ]
Δ n ( i 1 ) M + i = Δ n s [ 1 exp ( t ( i 1 ) M + i τ r ) ] exp [ ( j = ( i 1 ) M + i + 1 MN γ j , [ ( i 1 ) M + i ] t j ) / τ e ]
Δ n NM = Δ n s [ 1 exp ( t NM / τ r ) ]
Δ n s = ( τ r τ e ) i = 1 N j = 1 M Δ n i j
Δ n i j = ( τ r τ e ) Δ n s M N = α Δ n s M N and α = τ r τ e
t N × M = τ r ln ( 1 Δ n N × M Δ n s ) = τ r ln ( 1 α M × N )
t ( i 1 ) × M + k = τ r ln { 1 α M × N exp [ ( j = ( i 1 ) × M + k + 1 N × M γ j , ( i 1 ) × M + 1 t j ) / τ e ] }
t 1 = τ r ln { 1 α M × N exp [ ( j = 2 N × M γ j , 1 t j ) / τ e ] }

Metrics