Abstract

Large degree-of-freedom real-time adaptive optics (AO) control requires reconstruction algorithms that are computationally efficient and readily parallelized for hardware implementation. In particular, we find the wave-front reconstruction for the Hudgin and Fried geometry can be cast into a form of the well-known Sylvester equation using the Kronecker product properties of matrices. We derive the filters and inverse filtering formulas for wave-front reconstruction in two-dimensional (2-D) Discrete Cosine Transform (DCT) domain for these two geometries using the Hadamard product concept of matrices and the principle of separable variables. We introduce a recursive filtering (RF) method for the wave-front reconstruction on an annular aperture, in which, an imbedding step is used to convert an annular-aperture wave-front reconstruction into a square-aperture wave-front reconstruction, and then solving the Hudgin geometry problem on the square aperture. We apply the Alternating Direction Implicit (ADI) method to this imbedding step of the RF algorithm, to efficiently solve the annular-aperture wave-front reconstruction problem at cost of order of the number of degrees of freedom, O(n). Moreover, the ADI method is better suited for parallel implementation and we describe a practical real-time implementation for AO systems of order 3,000 actuators.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm

Hongwu Ren, Richard Dekany, and Matthew Britton
Appl. Opt. 44(13) 2626-2637 (2005)

Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform

Lisa A. Poyneer, Donald T. Gavel, and James M. Brase
J. Opt. Soc. Am. A 19(10) 2100-2111 (2002)

Experimental validation of Fourier-transform wave-front reconstruction at the Palomar Observatory

Lisa A. Poyneer, Mitchell Troy, Bruce Macintosh, and Donald T. Gavel
Opt. Lett. 28(10) 798-800 (2003)

References

  • View by:
  • |
  • |
  • |

  1. R. Dekany, J. E. Nelson, and B. Bauman, “Design considerations for CELT adaptive optics,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 212–225 (2000)
  2. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977)
    [Crossref]
  3. D. L. Fried, “Least-squire fitting a wave-front distortion estimate to an array of the phase difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977)
    [Crossref]
  4. K. R. Freischlad and C. L. Koliopoulos, “Modal estimation of a wave font from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986)
    [Crossref]
  5. L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
    [Crossref]
  6. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “A multigrid preconditioned conjugate gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. A 19, 1817–1822 (2002)
    [Crossref]
  7. L. Gilles, “Order-N sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Opt. Lett. 28, 1927–1929 (2003)
    [Crossref] [PubMed]
  8. D. G. MacMartin, “Local, hierachic, and iterative reconstructors for adaptive optics,” J. Opt. Am. A 20, 1084–1093 (2003)
    [Crossref]
  9. F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)
  10. B. R. Hunt, “Matrix formulation fo the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979)
    [Crossref]
  11. R. A. Horn and C. R. Johnson, Topics in matrix analysis, (Cambridge University Press, New York, 1991)
    [Crossref]
  12. H. Ren and R. Dekany, “wave-front reconstruction for extreme adaptive optics based on fast recursive filtering,” submitted to applied optics
  13. A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alternating direction implicit iteration,” Computers Math. Applic. 21(9), 43–58 (1991)
    [Crossref]
  14. R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB=C,” Comm. of ACM 15, 820–826 (1972)
    [Crossref]
  15. D. S. Watkins, Fundamentals of Matrix Computations, second edition (John Wiley & Sons, inc., New York, 2002)
    [Crossref]
  16. Rao and P. Yip, Discrete Cosine Transform, Algorithm, Advantages, Applications (Academic Press, inc, San Diego, 1990)
  17. R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
    [Crossref]

2003 (2)

L. Gilles, “Order-N sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Opt. Lett. 28, 1927–1929 (2003)
[Crossref] [PubMed]

D. G. MacMartin, “Local, hierachic, and iterative reconstructors for adaptive optics,” J. Opt. Am. A 20, 1084–1093 (2003)
[Crossref]

2002 (2)

L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
[Crossref]

L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “A multigrid preconditioned conjugate gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. A 19, 1817–1822 (2002)
[Crossref]

1992 (1)

R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
[Crossref]

1991 (1)

A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alternating direction implicit iteration,” Computers Math. Applic. 21(9), 43–58 (1991)
[Crossref]

1986 (1)

1979 (1)

1977 (2)

1972 (1)

R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB=C,” Comm. of ACM 15, 820–826 (1972)
[Crossref]

Bartels, R. H.

R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB=C,” Comm. of ACM 15, 820–826 (1972)
[Crossref]

Base, J.M.

L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
[Crossref]

Bauman, B.

R. Dekany, J. E. Nelson, and B. Bauman, “Design considerations for CELT adaptive optics,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 212–225 (2000)

Brack, G. L.

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Burruss, R. S.

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Dainty, J.C.

R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
[Crossref]

Dekany, R.

H. Ren and R. Dekany, “wave-front reconstruction for extreme adaptive optics based on fast recursive filtering,” submitted to applied optics

R. Dekany, J. E. Nelson, and B. Bauman, “Design considerations for CELT adaptive optics,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 212–225 (2000)

Dekany, R. G.

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Ellerbroek, B. L.

Freischlad, K. R.

Fried, D. L.

Gavel, D.T.

L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
[Crossref]

Gilles, L.

Glindemann, A.

R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
[Crossref]

Horn, R. A.

R. A. Horn and C. R. Johnson, Topics in matrix analysis, (Cambridge University Press, New York, 1991)
[Crossref]

Hudgin, R. H.

Hunt, B. R.

Johnson, C. R.

R. A. Horn and C. R. Johnson, Topics in matrix analysis, (Cambridge University Press, New York, 1991)
[Crossref]

Koliopoulos, C. L.

Lane, R. G.

R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
[Crossref]

Lu, A.

A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alternating direction implicit iteration,” Computers Math. Applic. 21(9), 43–58 (1991)
[Crossref]

MacMartin, D. G.

D. G. MacMartin, “Local, hierachic, and iterative reconstructors for adaptive optics,” J. Opt. Am. A 20, 1084–1093 (2003)
[Crossref]

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Nelson, J. E.

R. Dekany, J. E. Nelson, and B. Bauman, “Design considerations for CELT adaptive optics,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 212–225 (2000)

Poyneer, L. A.

L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
[Crossref]

Rao,

Rao and P. Yip, Discrete Cosine Transform, Algorithm, Advantages, Applications (Academic Press, inc, San Diego, 1990)

Ren, H.

H. Ren and R. Dekany, “wave-front reconstruction for extreme adaptive optics based on fast recursive filtering,” submitted to applied optics

Shi, F.

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Stewart, G. W.

R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB=C,” Comm. of ACM 15, 820–826 (1972)
[Crossref]

Troy, M.

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Vogel, C. R.

Wachspress, E. L.

A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alternating direction implicit iteration,” Computers Math. Applic. 21(9), 43–58 (1991)
[Crossref]

Watkins, D. S.

D. S. Watkins, Fundamentals of Matrix Computations, second edition (John Wiley & Sons, inc., New York, 2002)
[Crossref]

Yip, P.

Rao and P. Yip, Discrete Cosine Transform, Algorithm, Advantages, Applications (Academic Press, inc, San Diego, 1990)

Comm. of ACM (1)

R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB=C,” Comm. of ACM 15, 820–826 (1972)
[Crossref]

Computers Math. Applic. (1)

A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alternating direction implicit iteration,” Computers Math. Applic. 21(9), 43–58 (1991)
[Crossref]

J. Opt. Am. A (1)

D. G. MacMartin, “Local, hierachic, and iterative reconstructors for adaptive optics,” J. Opt. Am. A 20, 1084–1093 (2003)
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J.Opt. Soc. Am. A (1)

L. A. Poyneer, D.T. Gavel, and J.M. Base, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J.Opt. Soc. Am. A 19, 2100–2111 (2002)
[Crossref]

Opt. Lett. (1)

Waves in Random Media (1)

R. G. Lane, A. Glindemann, and J.C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992)
[Crossref]

Other (6)

D. S. Watkins, Fundamentals of Matrix Computations, second edition (John Wiley & Sons, inc., New York, 2002)
[Crossref]

Rao and P. Yip, Discrete Cosine Transform, Algorithm, Advantages, Applications (Academic Press, inc, San Diego, 1990)

R. A. Horn and C. R. Johnson, Topics in matrix analysis, (Cambridge University Press, New York, 1991)
[Crossref]

H. Ren and R. Dekany, “wave-front reconstruction for extreme adaptive optics based on fast recursive filtering,” submitted to applied optics

R. Dekany, J. E. Nelson, and B. Bauman, “Design considerations for CELT adaptive optics,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 212–225 (2000)

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss, and R. G. Dekany, “Sparse matrix wave-front reconstruction: simulations and experiments,” in Adaptive optical system technologiesΠ , P. Wizinowich, ed., Proc. SPIE4839, 1035–1044 (2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Flowchart for the RF in which the preconditioning solution step is solved through the Sylvester equation to accelerate the convergence rate of the iterative process.
Fig. 2.
Fig. 2. Annular wave-front phase screen embedded in a 255×255 size square-aperture sampling grid. The colormap is shown in radians.
Fig. 3.
Fig. 3. Comparison of the rTRMS performance of the RFCG algorithm for the Fried geometry, when the imbedding step is solved using the ADI and BS methods respectively. The subaperture slope SNR is equal to 2, 8, 32 and 128, respectively, for both methods from top curves to bottom ones.
Fig. 4.
Fig. 4. RPE (in radians) after 50 iterations when solving the wave-front reconstruction for the Fried geometry using the RFCG algorithm, and the imbedding step is solved using the ADI method. The wave-front reconstruction is done in a 255×255 sized sampling grids and the subaperture slope SNR is equal to 2, 8, 32 and 128 for the RPE in image (a), (b), (c) and (d), respectively.
Fig. 5.
Fig. 5. Comparison of the rTRMS performance of the RFD algorithm for the Fried geometry, when the imbedding step is solved using the ADI and BS methods respectively. The subaperture slope SNR is equal to 2, 8, 32 and 128, respectively, for both methods from top curves to bottom ones.
Fig. 6.
Fig. 6. RPE (in radians) after 50 iterations when solving the wave-front reconstruction for the Fried geometry using the RFD algorithm, and the imbedding step is solved using the ADI method. The wave-front reconstruction is done in a 255×255 sized sampling grids and the subaperture slope SNR is equal to 2, 8, 32 and 128 for the RPE in image (a), (b), (c) and (d), respectively.

Tables (1)

Tables Icon

Table 1. The ρj parameter for the ADI method when ε=5×10-4 and N=255

Equations (73)

Equations on this page are rendered with MathJax. Learn more.

s = P ϕ + η ,
P T P ϕ = P T s .
P = [ P 1 P 2 ] ,
r = P T s = P 1 T s x + P 2 T s y ,
P 1 = I D 1 ,
P 2 = D 1 I ,
Y Z = [ y 11 Z y 12 Z y 1 n Z y 21 Z y 22 Z y 2 n Z y m 1 Z y m 2 Z y mn Z ] ,
D 1 = [ 1 1 1 1 1 1 1 1 ] .
P T P = ( I D 1 ) T ( I D 1 ) + ( D 1 I ) T ( D 1 I ) .
( Y Z ) T = Y T Z T ,
( Y Z ) ( W X ) = ( YW ) ( ZX ) ,
P T P = I A + A I ,
A = [ 1 1 1 2 1 1 2 1 1 1 ] .
( I A + A I ) ϕ = r .
vec A = [ a 1 a 2 a N ] ,
( I A + A I ) vec ( Φ T ) = vec ( R T ) ,
vec ( AYB ) = ( B T A ) vec Y ,
A Φ + Φ A = R .
F = [ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ] .
P 1 = F D 1 ,
P 2 = D 1 F ,
P T P = ( F D 1 ) T ( F D 1 ) + ( D 1 F ) T ( D 1 F ) .
P T P = H A + A H ,
H = 1 4 [ 1 1 1 2 1 1 2 1 1 1 ] ,
( H A + A H ) ϕ = r .
A Φ H + H Φ A = R ,
A = M Λ A M T .
Λ A M T Φ M + M T Φ M Λ A = M T R M .
( λ u T + u λ T ) ( M T Φ M ) = M T R M ,
Φ = M ( M T R M λ u T + u λ T ) M T = M ( M T R M T H ) M T .
M mn = 2 N κ m cos [ m ( 2 n + 1 ) π 2 N ] , ( m , n = 0 , 1 , , N 1 ) ,
λ m = 4 sin 2 ( m π 2 N ) , ( m = 0 , 1 , , N 1 ) ,
T mn H = 4 [ sin 2 ( m π 2 N ) + sin 2 ( 2 N ) ] , ( m , n = 0 , 1 , , N 1 ) .
S mn = 2 N κ m sin [ ( m + 1 ) ( 2 n + 1 ) π 2 N ] , ( m , n = 0 , 1 , , N 1 ) ,
σ m = cos 2 [ ( m + 1 ) π 2 N ] , ( m = 0 , 1 , , N 1 ) .
τ m = cos 2 ( m π 2 N ) , ( m = 0 , 1 , , N 1 ) .
H = M Λ H M T .
Φ = M ( M T RM λ τ T + τ λ T ) M T .
T mn F = 4 [ sin 2 ( m π 2 N ) cos 2 ( n π 2 N ) + sin 2 ( n π 2 N ) cos 2 ( m π 2 N ) ] ,
( m , n = 0 , 1 , , N 1 ) .
A Φ k + Φ k A = R k .
r k = b k C x k ,
( A + ρ j I ) Φ k j 1 2 = R k Φ k j 1 ( A ρ j I ) ,
Φ k j ( A + ρ j I ) = R k ( A ρ j I ) Φ k j 1 2 .
ϖ a = 4 sin 2 ( π 2 N ) ,
ϖ b = 4 sin 2 [ ( N 1 ) π 2 N ] .
h = 1 2 ( ϖ a ϖ b + ϖ b ϖ a ) ,
g = 1 h + h 2 1 ,
g = 1 g 2 .
J = ln 4 ε ln 4 g π 2 .
ρ j = ϖ a ϖ b g dn ( υ j , g ) , ( j = 1 , 2 , , J ) ,
dn ( υ j , g ) = 2 q υ j 2 ( 1 + q 1 υ j + q 1 + υ j ) ( 1 + 2 q ) ( 1 + q ) , ( υ j 0.5 ) ,
dn ( υ j , g ) = g dn ( υ J j + 1 , g ) , ( υ j < 0.5 ) ,
υ j = 2 j 1 2 J ,
q = ( g 4 ) 2 ( 1 + g 2 2 ) .
Q x = d ,
Q = [ a 1 f 1 c 2 a 2 f 2 c N 1 a N 1 f N 1 c N a N ] .
L = [ 1 l 2 1 l N 1 1 l N 1 ] ,
U = [ u 1 f 1 u 2 f 2 u N 1 f N 1 u N ] .
u 1 = a 1 ,
l i = c i u i ,
u i = a i l i f i 1 ,
( i = 2 , 3 , , N ) .
y 1 = d 1 ,
y i = d i l i y i 1 ,
( i = 2 , 3 , , N ) ,
x N = y N u N ,
x i = ( y i x i + 1 f i ) u i ,
( i = N 1 , N 2 , , 1 ) .
e r = w 0 · * [ e ( v 1 T e ) v 1 ] ,
RMS = ( e r · * e r ) 1 2 ,
TRMS = [ 1 n e r T e r ] 1 2 ,
rTRMS = [ e r T e r x T x ] 1 2 .

Metrics