Abstract

We demonstrate a tunable hollow waveguide distributed Bragg reflector consisting of a grating loaded slab hollow waveguide with a variable air-core. The modeling shows that a change in an air-core thickness enables a large shift of several tens of nanometers in Bragg wavelength due to a change of several percents in a propagation constant. We fabricated a slab hollow waveguide Bragg reflector with 620 µm long and, 190 nm deep 1st-order circular grating composed of SiO2, exhibiting strong Bragg reflection at 1558 nm with an air-core thickness of 10 µm for TM mode. The peak reflectivity is 65 % including fiber coupling losses, the 3 dB bandwidth is 2.8 nm and the grating-induced loss is less than 0.5 dB. We demonstrate a 3 nm wavelength tuning of the fabricated hollow waveguide Bragg reflector by changing an air-core thickness from 10 µm to 7.9 µm.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and low-loss bent hollow waveguides with distributed Bragg reflector

Hua-Kung Chiu, Fu-Li Hsiao, Chia-Hua Chan, and Chii-Chang Chen
Opt. Express 16(19) 15069-15073 (2008)

Tunable Bragg reflectors on silicon-on-insulator rib waveguides

Ivano Giuntoni, Andrzej Gajda, Michael Krause, Ralf Steingrüber, Jürgen Bruns, and Klaus Petermann
Opt. Express 17(21) 18518-18524 (2009)

Fabrication and characterization of hollow waveguide optical switch with variable air core

Chang-Hwan Bae and Fumio Koyama
Opt. Express 13(9) 3259-3263 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
    [Crossref]
  2. T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
    [Crossref]
  3. T. Miura and F. Koyama, “Novel Phase-Tunable Three-Dimensional Hollow Waveguides with Variable Air Core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
    [Crossref]
  4. Y. Sakurai and F. Koyama, “Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors,” Jpn. J. Appl. Phys. 43, L631–L633 (2004).
    [Crossref]
  5. T. Miura and F. Koyama, “Low-Loss and Polarization-Insensitive Semiconductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys. 43, L21–L23 (2004).
    [Crossref]
  6. Y. Sakurai and F. Koyama, “Control of Group Delay and Chromatic Dispersion in Tunable Hollow Waveguide with Highly Reflective Mirrors,” submitted to Jpn. J. Appl. Phys.43 (2004).

2004 (2)

Y. Sakurai and F. Koyama, “Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors,” Jpn. J. Appl. Phys. 43, L631–L633 (2004).
[Crossref]

T. Miura and F. Koyama, “Low-Loss and Polarization-Insensitive Semiconductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys. 43, L21–L23 (2004).
[Crossref]

2003 (2)

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
[Crossref]

T. Miura and F. Koyama, “Novel Phase-Tunable Three-Dimensional Hollow Waveguides with Variable Air Core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[Crossref]

2002 (1)

T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Beeson, K. W.

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
[Crossref]

Koyama, F.

Y. Sakurai and F. Koyama, “Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors,” Jpn. J. Appl. Phys. 43, L631–L633 (2004).
[Crossref]

T. Miura and F. Koyama, “Low-Loss and Polarization-Insensitive Semiconductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys. 43, L21–L23 (2004).
[Crossref]

T. Miura and F. Koyama, “Novel Phase-Tunable Three-Dimensional Hollow Waveguides with Variable Air Core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[Crossref]

T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Y. Sakurai and F. Koyama, “Control of Group Delay and Chromatic Dispersion in Tunable Hollow Waveguide with Highly Reflective Mirrors,” submitted to Jpn. J. Appl. Phys.43 (2004).

Matsutani, A.

T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Miura, T.

T. Miura and F. Koyama, “Low-Loss and Polarization-Insensitive Semiconductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys. 43, L21–L23 (2004).
[Crossref]

T. Miura and F. Koyama, “Novel Phase-Tunable Three-Dimensional Hollow Waveguides with Variable Air Core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[Crossref]

T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Sakurai, Y.

Y. Sakurai and F. Koyama, “Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors,” Jpn. J. Appl. Phys. 43, L631–L633 (2004).
[Crossref]

Y. Sakurai and F. Koyama, “Control of Group Delay and Chromatic Dispersion in Tunable Hollow Waveguide with Highly Reflective Mirrors,” submitted to Jpn. J. Appl. Phys.43 (2004).

Shacklette, L. W.

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
[Crossref]

Zou, H.

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Miura and F. Koyama, “Novel Phase-Tunable Three-Dimensional Hollow Waveguides with Variable Air Core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[Crossref]

J. Lightwave. Technol. (1)

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable Planar Polymer Bragg Gratings Having Exceptionally Low Polarization Sensitivity,” J. Lightwave. Technol. 21, 1083–1088 (2003).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Miura, F. Koyama, and A. Matsutani, “Modeling and Fabrication of Hollow Optical Waveguide for Photonic Integrated Circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Y. Sakurai and F. Koyama, “Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors,” Jpn. J. Appl. Phys. 43, L631–L633 (2004).
[Crossref]

T. Miura and F. Koyama, “Low-Loss and Polarization-Insensitive Semiconductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys. 43, L21–L23 (2004).
[Crossref]

Other (1)

Y. Sakurai and F. Koyama, “Control of Group Delay and Chromatic Dispersion in Tunable Hollow Waveguide with Highly Reflective Mirrors,” submitted to Jpn. J. Appl. Phys.43 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic structure of tunable hollow waveguide distributed Bragg reflector with variable air-core.
Fig. 2.
Fig. 2. Calculated results of reflection spectra with different air-core for TE mode. The period, depth and length of grating are 780 nm, 250 nm and 7.8 mm, respectively.
Fig. 3.
Fig. 3. (a) SEM photographs and (b) AFM view of fabricated hollow waveguide Bragg reflector with 1st-order circular grating.
Fig. 4.
Fig. 4. Measured results of reflection spectra with an air-core thickness of 10 µm for TM mode.
Fig. 5.
Fig. 5. Calculated intensity distribution of the hollow waveguide with an air-core thickness of 10 µm.
Fig. 6.
Fig. 6. Measured reflection spectra with various air-core thicknesses for TM mode.
Fig. 7.
Fig. 7. Calculation and experiment results on tunability of Bragg wavelength for TE and TM modes with variable air-core.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg = 2 · n eff · Λ

Metrics