Abstract

A reconstructed hyperspectral datacube has been successfully recovered from a badly flawed point-spread function (PSF) observation. The corrected PSF alleviated unnoticed detector saturation and misregistration artifacts in the calibration of a crucial, irreplaceable near-infrared flash hyperspectral imager dataset. This flawed PSF induced a defocus-like artifact as well as spectral distortions in the three-dimensional hyperspectral estimate of the data. The PSF artifacts, which would have caused severe misinterpretation of the spatio-spectral information, were correctable post detection using an optical model of the PSF constrained by the available flawed calibration.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-spectral modulating snapshot hyperspectral imager

William R. Johnson, Daniel W. Wilson, and Greg Bearman
Appl. Opt. 45(9) 1898-1908 (2006)

Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk
Opt. Express 18(14) 14330-14344 (2010)

Demonstration of a high-speed nonscanning imaging spectrometer

M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker
Opt. Lett. 22(16) 1271-1273 (1997)

References

  • View by:
  • |
  • |
  • |

  1. M.R. Descour, C.E. Volin, E.L. Dereniak, T.M. Gleeson, M. F. Hopkins, D.W. Wilson, and P.D. Maker, “Demonstration of a computed tomographic imaging spectrometer using a computer generated hologram disperser,” Appl. Opt. 36, 3694–3698 (1997).
    [Crossref] [PubMed]
  2. E. Tessar, “Image quality with current adaptive optics instruments,” Astron. Astrophys. Suppl. Ser. 125, 581–593 (1997).
    [Crossref]
  3. C.R. Neyman, “Characterization of the AEOS Adaptive Optics System,” Astro. Soc. Of Pac. 114, 1260–1266 (2001).
  4. M.R. Descour and E.L. Dereniak, “Computed-tomographic imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
    [Crossref] [PubMed]
  5. J.P. Garcia and E.L. Dereniak, “Mixed-expectation image reconstruction technique,” Appl. Opt. 38, 3745–3748 (1999).
    [Crossref]
  6. C.E. Volin, J.P. Garcia, E.L. Dereniak, M.R. Descour, T. Hamiltonian, and R. McMillian, “Midwaveinfrared snapshot imaging spectrometer,” Appl. Opt. 40, 4501–4506 (2001).
    [Crossref]
  7. C.E. Volin, “Portable snapshot imaging spectrometer,” Ph.D. Dissertation (University of Arizona Press, Tucson, Arizona, 2000).
  8. K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).
  9. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  10. J H.H. Barrett and K.J. Myers, “The Dirac Delta and other generalized functions,” in Foundations of Image Science, (John Wiley & Sons, Inc., New Jersey, 2004), pp.63–94.
  11. W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

2004 (1)

W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

2003 (1)

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

2001 (2)

1999 (1)

1997 (2)

1995 (1)

Barrett, J H.H.

J H.H. Barrett and K.J. Myers, “The Dirac Delta and other generalized functions,” in Foundations of Image Science, (John Wiley & Sons, Inc., New Jersey, 2004), pp.63–94.

Basty, S.

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Connell, D.O'

W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

Dereniak, E. L.

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Dereniak, E.L.

Descour, M.R.

Garcia, J.P.

Gleeson, T.M.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Hamiltonian, T.

Hege, K.

W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Hopkins, M. F.

Johnson, W. R.

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Johnson, W.R.

W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

Maker, P.D.

McMillian, R.

Myers, K.J.

J H.H. Barrett and K.J. Myers, “The Dirac Delta and other generalized functions,” in Foundations of Image Science, (John Wiley & Sons, Inc., New Jersey, 2004), pp.63–94.

Neyman, C.R.

C.R. Neyman, “Characterization of the AEOS Adaptive Optics System,” Astro. Soc. Of Pac. 114, 1260–1266 (2001).

O’Connell, D.

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Tessar, E.

E. Tessar, “Image quality with current adaptive optics instruments,” Astron. Astrophys. Suppl. Ser. 125, 581–593 (1997).
[Crossref]

Volin, C.E.

Wilson, D.W.

Appl. Opt. (4)

Astro. Soc. Of Pac. (1)

C.R. Neyman, “Characterization of the AEOS Adaptive Optics System,” Astro. Soc. Of Pac. 114, 1260–1266 (2001).

Astron. Astrophys. Suppl. Ser. (1)

E. Tessar, “Image quality with current adaptive optics instruments,” Astron. Astrophys. Suppl. Ser. 125, 581–593 (1997).
[Crossref]

Opt. Eng. Lett. (1)

W.R. Johnson, K. Hege, D.O' Connell, and E.L. Dereniak, “Novel calibration recovery technique for an EM reconstruction,” Opt. Eng. Lett. 43, 10–12 (2004).

Proc. SPIE (1)

K. Hege, D. O’Connell, W. R. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” in Remote Sensing and Space Technology, Proc. SPIE 5159, 41–49 (2003).

Other (3)

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

J H.H. Barrett and K.J. Myers, “The Dirac Delta and other generalized functions,” in Foundations of Image Science, (John Wiley & Sons, Inc., New Jersey, 2004), pp.63–94.

C.E. Volin, “Portable snapshot imaging spectrometer,” Ph.D. Dissertation (University of Arizona Press, Tucson, Arizona, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The generalized graphical CTIS layout. The lens depictions are meant only to be representative of the role each lens plays in the system. The objective assembly in this work is the Air Force AEOS adaptive optics telescope.
Fig. 2.
Fig. 2. Limited angle CTIS tomographic pattern of double star HIP 98636.
Fig. 3.
Fig. 3. Zoomed image of saturation energy leakage into surrounding pixels forming apparent PSF wings.
Fig. 4.
Fig. 4. MTF for saturation (L.) takes on appearance of a defocused MTF with an even number of Fresnel zones in these plots. Simulated MTF is also shown (R.).
Fig. 5.
Fig. 5. Near-infrared co-registered reconstructed datacube grayscale raster showing before (L.) and after (R.) saturation correction.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g = Hf + n ,
g m = λ b L H λ m ; n * f λ b , n + n m ,
1 m M and 1 n L ,
g λ b = H λ b , λ 1 λ b λ L
OTF = ∫∫ h ( x , y ) 2 exp [ i 2 π ( ξ x + η y ) ] dxdy .
S sat = { ∫∫ OTF ( ξ , η ) dξdη } saturated { ∫∫ OTF ( ξ , η ) dξdη } diffraction_limit
δ ( x , y ) = lim k c k exp [ π k 2 ( x 2 + y 2 ) ] ,

Metrics