B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
P. S. Westbrook, et al., “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12, (2000).
[Crossref]
R.F. Creganet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
E. Yablonovitch, “Liquid versus photonics crystals,” Nature 401, 539–541 (1999).
[Crossref]
K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
S. Kralj and S. Zumer, “Smectic-A structures in submicrometer cylindrical cavities,” Phys. Rev. E, 54(2), 1610–1617 (1996).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
J. T. Mang, K. Sakamoto, and S. Kumar, “Smectic Layer Orientation in Confined Geometries,” Mol. Cryst. Liq. Cryst. 223, 133–142 (1992).
[Crossref]
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[Crossref]
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,” Optical Fiber Communication Conference ThI3 (2003).
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]
S. Chandrasekhar, Liquid crystals, (Cambridge University Press, 1977).
R. Syms and J. Cozens, Optical Guided Waves and Devices, (McGraw-Hill Book Company England, 1992).
R.F. Creganet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
P. G. de Gennes and J. ProstJ. The Physics of liquid crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
K. P. Hansen, et al., “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55µm,” Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002) PDFA9.
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,” Optical Fiber Communication Conference ThI3 (2003).
J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,” Optical Fiber Communication Conference ThI3 (2003).
J. B. Jensen, et al. “Photonic Crystal Fibre based evanescent-wave sensor for detection of aqueous solutions,” Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2003).
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]
D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[Crossref]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
S. Kralj and S. Zumer, “Smectic-A structures in submicrometer cylindrical cavities,” Phys. Rev. E, 54(2), 1610–1617 (1996).
[Crossref]
J. T. Mang, K. Sakamoto, and S. Kumar, “Smectic Layer Orientation in Confined Geometries,” Mol. Cryst. Liq. Cryst. 223, 133–142 (1992).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
J. T. Mang, K. Sakamoto, and S. Kumar, “Smectic Layer Orientation in Confined Geometries,” Mol. Cryst. Liq. Cryst. 223, 133–142 (1992).
[Crossref]
D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,” Optical Fiber Communication Conference ThI3 (2003).
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
P. G. de Gennes and J. ProstJ. The Physics of liquid crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
J. T. Mang, K. Sakamoto, and S. Kumar, “Smectic Layer Orientation in Confined Geometries,” Mol. Cryst. Liq. Cryst. 223, 133–142 (1992).
[Crossref]
D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[Crossref]
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
R. Syms and J. Cozens, Optical Guided Waves and Devices, (McGraw-Hill Book Company England, 1992).
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
P. S. Westbrook, et al., “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12, (2000).
[Crossref]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
E. Yablonovitch, “Liquid versus photonics crystals,” Nature 401, 539–541 (1999).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. Kralj and S. Zumer, “Smectic-A structures in submicrometer cylindrical cavities,” Phys. Rev. E, 54(2), 1610–1617 (1996).
[Crossref]
D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[Crossref]
P. S. Westbrook, et al., “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12, (2000).
[Crossref]
P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76, (1994).
[Crossref]
S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, “Smectic Liquid Crystal Waveguides with cylindrical Geometry,” Mol. Cryst. Liq. Cryst. 201, 137–145 (1991).
[Crossref]
J. T. Mang, K. Sakamoto, and S. Kumar, “Smectic Layer Orientation in Confined Geometries,” Mol. Cryst. Liq. Cryst. 223, 133–142 (1992).
[Crossref]
B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]
[PubMed]
E. Yablonovitch, “Liquid versus photonics crystals,” Nature 401, 539–541 (1999).
[Crossref]
C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,” Nature Materials 1, 111–113 (2002).
[Crossref]
J. Limpert, et al., “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818
[Crossref]
[PubMed]
K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express 9, 698–713 (2001).
[Crossref]
[PubMed]
S. Kralj and S. Zumer, “Smectic-A structures in submicrometer cylindrical cavities,” Phys. Rev. E, 54(2), 1610–1617 (1996).
[Crossref]
H. -S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E 54, 568–575, (1996).
[Crossref]
K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]
[PubMed]
J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 283, 1476–1478 (1998).
[Crossref]
R.F. Creganet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, “Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,” Science 278, 2077–2080 (1998).
[Crossref]
J. B. Jensen, et al. “Photonic Crystal Fibre based evanescent-wave sensor for detection of aqueous solutions,” Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2003).
K. P. Hansen, et al., “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55µm,” Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002) PDFA9.
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
R. Syms and J. Cozens, Optical Guided Waves and Devices, (McGraw-Hill Book Company England, 1992).
P. G. de Gennes and J. ProstJ. The Physics of liquid crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
S. Chandrasekhar, Liquid crystals, (Cambridge University Press, 1977).
J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,” Optical Fiber Communication Conference ThI3 (2003).