Abstract

Diagnostic sensors are demanded during plasma processes. Holograms of plasma taken with laser light without a reference beam were used to monitor behaviors of charged particles produced in nitrogen plasma as a function of electrode temperature ranging between 50 and 300℃. Holograms were characterized as a function of the pixel sum and grayscale value. Pixel sum calculated in identified grayscale ranges strongly correlated with ion density and emitted light intensity measured with a langmuir probe and optical emission spectroscopy, respectively. The performance was further evaluated with data acquired as a function of N2 and NH3 flow rates and improved correlations were observed in the new grayscale range. The confirmed correlations indicate that a hologram is a viable means to diagnose behaviors of plasma particles such as ions. Underlying principles are discussed in view of particle and charge composing vacuum and light.

© 2016 Optical Society of Korea

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.