The misalignment errors and fluctuations in irradiance due to atmospheric turbulence can severely degrade the performance of free-space optical (FSO) systems. In this paper, we investigate the asymptotic bit error rate (BER) performance and diversity orders of FSO links using parallel transmit-diversity schemes. The BER expressions of FSO links with the switch-and-examine transmit (SET), switch-and-examine transmit with post-selection (SETps), dual-branch transmit laser selection (Dual-TLS), and group transmit laser selection (Group-TLS) schemes are derived, based on an approximate channel model. Then numerical simulations for these four schemes in the region of high average signal-to-noise ratio (SNR) are presented under different channel conditions. The results show that the four transmit-diversity schemes can reduce system complexity and overcome the limitation of peak power, without much BER deterioration.

© 2016 Optical Society of Korea

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.