Abstract

We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005).
    [Crossref]
  4. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).
    [Crossref]
  5. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006).
    [Crossref]
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006).
    [Crossref]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
    [Crossref]
  8. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
    [Crossref]
  9. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
    [Crossref]
  10. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008).
    [Crossref]
  11. G. Veronis, Z. Yu, S. Kocabas, D. Miller, M. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302-308 (2009).
    [Crossref]
  12. T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [Crossref]
  13. A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [Crossref]
  14. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides,” Opt. Express 17, 3610-3618 (2009).
    [Crossref]
  15. J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998).
    [Crossref]
  16. G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18, 1771-1776 (2001).
    [Crossref]
  17. G. W. Chern and L. A. Wang, “Design of binary long-period fiber grating filters by the inverse-scattering method with genetic algorithm optimization,” J. Opt. Soc. Am. A 19, 772-780 (2002).
    [Crossref]
  18. D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009).
    [Crossref]
  19. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006).
    [Crossref]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).
  21. J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).
  22. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).

2009 (4)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.

D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009).
[Crossref]

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides,” Opt. Express 17, 3610-3618 (2009).
[Crossref]

G. Veronis, Z. Yu, S. Kocabas, D. Miller, M. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302-308 (2009).
[Crossref]

2008 (2)

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[Crossref]

2007 (1)

T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

2006 (3)

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006).
[Crossref]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006).
[Crossref]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006).
[Crossref]

2005 (3)

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[Crossref]

2004 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
[Crossref]

1998 (1)

J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998).
[Crossref]

1989 (1)

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).

1988 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).

1985 (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

1975 (1)

J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).

Appl. Phys. Lett. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Lightwave Technol. (4)

D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009).
[Crossref]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006).
[Crossref]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006).
[Crossref]

J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005).
[Crossref]

Opt. Express (4)

Phys. Rev. B (4)

T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[Crossref]

Other (5)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.