Abstract

Due to the high design freedom, metasurfaces are widely applied to realize miniaturized optical devices with high performance. Recently, assisted by optical design, monochromatic aberration–corrected lenses, composed of two metasurface layers, have been proposed for a well-focused light spot in the focal plane at large incident angles. However, the focus cannot be tuned in these structures. In this paper, based on the principle of the Moiré lens, a wide-angle ($\pm 30^\circ $) metalens with continuously tunable and monochromatic aberration–corrected focus that consists of two cascaded face-to-face metasurfaces is proposed. The focal length of the lens can be tuned by the mutual rotation of the metasurfaces. Simulation results show that the focal plane is changed to 5.34 µm when the rotation angle is increased by 0.4 rad at the incident wavelength of 810 nm. It is anticipated that the proposed metalens may have a good application prospect in integrated miniaturized imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Metasurfaces, which are ultra-thin two-dimensional structures that consist of metal or dielectric optical subwavelength antennas for wavefront modulation [1], have attracted much research interest in recent years. Because the amplitude, phase, and polarization of the transmitted or reflected wave from one unit antenna are highly dependent on the antenna size, shape, material, spacing, and the surrounding medium, various kinds of devices based on metasurface have been proposed by structure design, such as holograms [26], deflectors [7,8] and wave plates [911]. Due to the advantages of small size, good integration with semiconductor devices, and high design freedom, metasurfaces are also applied to solve the problem of the traditional geometrical optical elements, such as chromatic and monochromatic aberrations [12]. Solving these aberrations usually requires several lenses in traditional geometrical optical design. However, recent research shows that it is possible to solve the aberrations with only one-layered or two-layered metasurfaces, which dramatically increase the compactness of the optical system. In 2015, Aieta et al. used a grating to eliminate the chromatic aberration of three independent wavelengths [13]. Then a broadband achromatic metalens in almost the entire visible range with double dielectric bar unit cells was proposed [14]. In this design, the unit cells were selected to achieve not only the required phase distribution but also the corresponding group delay. Similarly, Shuming et al. and Wang et al. achieved chromatic aberration corrections using gold and GaN metalenes with square unit cells [15,16]. Besides the chromatic aberration correction, metasurfaces designed for monochromatic aberration correction have also been proposed very recently. In 2016, with the help of optical design, Arbabi et al. used a metasurface doublet structure to correct the monochromatic aberrations of a metalens in the infrared band. The field of view was up to $ \pm {{30}}^\circ $ [17]. Then another monochromatic aberration–corrected metalens with the incident angle of $ \pm 25^\circ $ was realized in the visible [18]. A step zoom metalens with large field-of-view angle ($ \pm 20^\circ $) was also proposed in 2019 [19].

However, all of these metalenses are non-tunable. Although an active metalens realized by mechanically stretching its flexible substrate was proposed [20], more metalenses with flexible focus are highly demanded. In a traditional geometrical optical system, the zoom capability is brought by a lens group that is mechanically movable along the optical axis. This doubtlessly increases the whole size of the system. The question is how to realize a zoomable metalens without the sacrifice in size. The concept of the Moiré lens provides a solution. The Moiré lens was first proposed and experimentally realized by Bernet in 2008 [21,22]. This lens was composed of two parallel phase-plates based on diffractive optical element structure. The phase distribution of the whole lens is the superposition of the two plates and dependent on the mutual rotation angle of the plates. Therefore, by phase construction of the two plates, the focus of the lens is tunable through rotating the plates. Compared with the traditional tuning mechanism, a Moiré lens is superior for its compact size and large tuning range. Recently, a Moiré lens was also designed using a two-layered metasurface structure [23]. However, this Moiré metalens still suffers from aberrations. It is possible to realize more applicable zoomable metalenses by combining the concepts of Moiré structures with aberration-free metalenses.

In this paper, we propose a polarization-independent zoomable metalens corrected for monochromatic aberrations at the wavelength of $\lambda = {{810}}\,\,{\rm{nm}}$. Assisted by optical design and the principle of the Moiré lens, the structures of the metasurfaces are determined. Simulation results show that the focus can be continuously tuned from 9.87 to 15.21 µm, and the lens focuses well at all of the focal planes even when the incident angle is up to $\pm 30^\circ $.

2. DESIGN PRINCIPLE

A. Design of a Metalens Corrected for Monochromatic Aberrations

In the metasurface-based lens design, Eq. (1) is usually used to calculate the required phase of one unit cell [9]:

$$\varphi ( r ) = - \frac{{2\pi }}{\lambda }\left( {\sqrt {{r^2} + {f^2}} - f} \right),$$
where $\lambda $ is the wavelength, $f$ is the designed focal length, and $r$ is the distance between one unit cell and the center of the metasurface. Although this equation ensures the waves radiated from the unit cells are in phase at the focus, like traditional spherical lenses, when the incident light has an oblique angle, the transmitted light will have a different focal length or may even not be focused [18], as shown in Fig. 1(a). Using Eq. (1) and Kirchoff’s scalar diffraction theory [12], we calculate the electric field distributions at the focal plane of a metasurface with perfect phase modulation for incident angles of 0°, 10°, 20°, and 30°. The parameters of $f$ and $\lambda $ are set as 15.21 µm and 810 nm. The radius of the metasurface is 14 µm. The results are shown in Fig. 1(b). As shown, with the increased incident angle, the focal effect becomes worse.

 

Fig. 1. (a) and (c) Schematic illustrations of the focusing effect of a traditional lens and a monochromatic aberration–corrected lens at oblique incident angles, respectively. The blue, green, red, and yellow lines represent $\theta = {{0}}^\circ $, 10°, 20°, and 30°, respectively. $\theta $ is the incident angle. (b) and (d) Theoretically calculated field distributions on the focal plane of corresponding metasurfaces for different incident angles. The radiuses of the two metasurfaces are both 14 µm. Scale bar: 1 µm.

Download Full Size | PPT Slide | PDF

To achieve the function of monochromatic aberrations correction, we use the commercial optical design software Zemax Optic Studio to optimize the geometric profiles of a lens with two even aspheric surfaces at the wavelength of 810 nm. The lens radius is 14 µm, and the material selected is ZnSe, with refractive index of ${n_1} = 2.4675$. After optimization, the geometric profile of the lens as a function of $r$ is calculated by the built-in Zemax equation:

$${h_{(i)}}(r) = \frac{{{c_{(i)}}{r^2}}}{{1 + \sqrt {1 - ( {1 + {k_{(i)}}} ){c_{(i)}}^2{r^2}} }} + \sum\limits_{m = 1}^5 {{a_{m(i)}}{r^{2i}}} ,$$
where $c$, $k$, and ${a_m}$ are the optimized parameters for minimizing the focal spot size at the incident angle up to $\pm 30^\circ $. Subscript $i = {{1}}$, 2 denotes the two surfaces of the lens. The values of these parameters given by Zemax are shown in Table 1, and the designed lens with the optimization results is shown in Fig. 1(c). The obtained focal length is 15.21 µm. We then extract the phase of the optimized lens by
$${\varphi _l}( r ) = \frac{{2\pi }}{\lambda }\{ {{n_0} \cdot [H - {h_l}(r)] + {n_1} \cdot {h_l}(r)} \},$$
in which $H = 9.7\,\,\unicode{x00B5}{\rm{m}}$ is the thickness of the lens center, ${h_l}(r) = {h_{(1)}}(r) + {h_{(2)}}(r)$ is the thickness distribution of the lens, and ${n_0}$ is the refractive index of air. Unlike the studies in Refs. [1719], in which two metasurfaces are employed, here we use only one single-layer metasurface so that the Moiré lens structure can be applied. To verify the monochromatic aberration correction effect of the designed metasurface, based on Eq. (3), the electric field distributions of a perfect metasurface at the focal plane, corresponding to different incident angles, are calculated theoretically. The results are shown in Fig. 1(d). Compared with Fig. 1(b), it is obviously that the focal spot is much smaller than that of a traditional metalens for large incident angles, which indicates a lens with large field of view is possible to realize using a single-layer metasurface.

Tables Icon

Table 1. Optimized Parameters Calculated by Zemax Optimization Design

B. Design of a Zoomable Moiré Metalens

To achieve the zooming function of the monochromatic aberration–corrected metalens, the Moiré lens structure is used, depicted in Fig. 2(a). It consists of two metasurface layers with silica substrates and amorphous silicon cylindrical nano-pillars and has high refractive index in the near-infrared wavelength range [24]. The radius of each metasurface is 14 µm, and the thickness of the substrates is 1 µm. The incident wavelength is 810 nm, with an incident angle denoted by $\theta $. The distance between the two metasurface layers is denoted by $d$, as shown in the side view of the metalens in Fig. 2(b). Borrowing the concept of the Moiré lens [20], the two metasurfaces have opposite phase distributions ${\varphi _1}$ and ${\varphi _2}$, which are calculated by

$$\begin{split}&{\varphi _1}( {\alpha ,r}) = \alpha {\varphi _l}(r),\\ &{\varphi _2}( {\alpha ,r} )= - \alpha {\varphi _l}(r),\end{split}$$
in which $\alpha $ and $r$ are coordinate parameters in the polar coordinates. ${\varphi _l}$ is the phase of the monochromatic aberration–corrected metalens calculated by Eq. (3). Thus, the total phase distribution of the whole structure is ${\varphi _{\rm{total}}} = {\varphi _1} + {\varphi _2} = 0$, which means there is no phase modulation. However, because ${\varphi _l}$ is independent on $\alpha $, when one of the metasurfaces (such as metasurface2) is rotated with an angle $\beta $, the total phase of the two metasurfaces then becomes
$${\varphi _{\rm{total}}} = \alpha {\varphi _l}(r) - (\alpha - \beta ){\varphi _l}(r) = \beta {\varphi _l}(r),$$
which indicates the output phase is linearly increased with the rotation angle. When $\beta = {{1}}\,\,{\rm{rad}}$, the total phase is the same as that of a monochromatic aberration–corrected phase, calculated by Eq. (3), and the focal length will be decreased by $\beta $. In practical design, to avoid the formation of two phase sectors, causing the efficiency decreased with the rotation angle, the phase distributions of the two metasurfaces are often calculated by [21]
$$\begin{split}{\varphi _1} ({\alpha ,r}) = \alpha \cdot {\rm{round}} [{\varphi _l}(r)],\\{\varphi _2}( {\alpha ,r} ) = - \alpha \cdot {\rm{round}} [{\varphi _l}(r)].\end{split}$$

 

Fig. 2. (a) Schematic of the tunable monochromatic aberration–corrected lens, which consists of two face-to-face metasurfaces. The focal plane is tuned by the mutual rotation angle $\beta $ of the two metasurfaces. (b) Side view of the metalens and top view of a single-layer metasurface. $d$ denotes the distance between the two metasurfaces. (c) Simulated transmission and phase of one unit cell, as a function of the nano-pillar radius. The subplot shows the structure of one unit cell.

Download Full Size | PPT Slide | PDF

We designed the lens accordingly. To ensure that the pixels on the two metasurfaces are aligned as much as possible when they are rotated, the nano-pillars are arranged in polar coordinates, as shown in the top view of one metasurface in Fig. 2(b). The geometric parameter sweep of one unit cell is conducted by simulations, using the finite-difference time-domain (FDTD) method (Lumerical Solutions). The schematic diagram of a unit-cell structure is shown in the inset of Fig. 2(c). The cylindrical nano-rods are arranged in a square lattice with a lattice constant of $p = 400\,\,{\rm{nm}}$. The radius and height of the nano-pillars are denoted by ${r_p}$ and $h$, respectively. The refractive indices of ${\rm{Si}}{{\rm{O}}_2}$ and amorphous silicon are 1.45315 and 3.52459339, respectively, at the wavelength of 810 nm [11]. During the sweep, the radius ${r_p}$ is varied from 20 to 115 nm, whereas the height $h$ remains 600 nm. The periodic boundary condition is set at $x$ and $y$ directions, and the perfectly matching layer is set at the $z$ direction (the propagation direction of the plane wave). The obtained transmittance and phase variations of one unit cell with respect to its radius are shown in Fig. 2(c). It is shown that the phase changes over ${{2}}\pi $ in the selected radius range. In addition, the transmittance is generally higher than 0.9, except for a narrow dip in the range of $92\,\,{\rm{nm}} \lt {r_p}\; \lt {{97}}\,\,{\rm{nm}}$. This is caused by the resonance of the incident wave in the a-Si nano-pillar [12], which should be excluded in the design.

 

Fig. 3. (a) and (b) Theoretically required phase profiles of the two metasurfaces, calculated by Eq. (6), when $\beta = 1\,\,{\rm{rad}}$. (c) Superposition of the two phase-profiles in (a) and (b). (d) and (e) Simulation results of transmitted phase profiles of the two metasurfaces. (f) Simulation results of transmitted phase profile of the bilayer metasurface.

Download Full Size | PPT Slide | PDF

The nano-pillars with proper radius are selected according to the results of Fig. 2(c) and the phases calculated by Eq. (6), which are converted in the region of [0, $2\pi $]. The distance between the two metasurfaces is selected as $d = 100\,\,{\rm{nm}}$ to eliminate the diffraction effect, which may lead to ${\varphi _{\rm{total}}}$ deviating from ${\varphi _1} + {\varphi _2}$. To verify the distance is close enough, we designed two metasurfaces based on Eq. (6) for $\beta = 1\,\,{\rm{rad}}$. Figures 3(a) and 3(b) show the phase distributions of ${\varphi _1}$ and ${\varphi _2}$ that we need. Their superposition ${\varphi _{\rm{total}}}$ is depicted in Fig. 3(c). We calculated the transmitted phase distributions of these two metasurfaces by simulations separately. The results are shown in Figs. 3(d) and 3(e), respectively, which are found to be in agreement with the required phase profiles in Figs. 3(a) and 3(b). We combined the two metasurfaces to form a Moiré structure, as shown in Fig. 2(a), and calculated the transmitted phase distribution of the whole structure by FDTD simulation. The result is shown in Fig. 3(f). By comparison of Figs. 3(c) and 3(f), it is shown that the simulated phase distribution of the bilayer metasurface structure agrees well with the required phase, which indicates the function of monochromatic aberration correction is possible to realize by the structure. The error is brought by the misalignment of the nano-pillars when there is a relative rotation of the two metasurfaces.

3. NUMERICAL SIMULATIONS AND RESULTS

The FDTD simulations are conducted to verify the monochromatic aberration correction and tunability of the proposed metalens. The transmitted field distributions of the metalens, corresponding to $\beta = 1\,\,{\rm{rad}}$, are shown in Fig. 4. Figure 4(a) shows that when the light is normally incident, a focus can be clearly found with the focal plane at $z = 15.21\,\,\unicode{x00B5}{\rm{m}}$, which agrees very well with the designed focal length. The numerical aperture (NA) is 0.68. When the incident angle is increased, Figs. 4(b)4(d) show that a well-focused light spot can still be found, even when $\theta $ is increased to 30°. The focus is shifted with the incident angle, and the intensity is decreased gradually. Figures 4(e)4(h) show the field distributions of the focal plane on the $xy$ plane. The obtained field distributions are very similar to those theoretically calculated in Fig. 1(d), which indicate the monochromatic aberration correction effect of the lens.

 

Fig. 4. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1\,\,{\rm{rad}}$. (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $. (e)–(h) Field distributions of the focal plane at $z = 15.21\,\,\unicode{x00B5}{\rm{m}}$, corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively.

Download Full Size | PPT Slide | PDF

We increased the rotation angle to $\beta = 1.2\,\,{\rm{rad}}$. The simulated field distributions of the lens focus, corresponding to various incident angles, are shown in Fig. 5. Figure 5(a) shows that when the incident angle is 0°, the focal length is decreased to 11.55 µm, and the NA becomes 0.77. The focal length is 3.66 µm smaller than that of $\beta = 1$ rad. When $\theta $ is increased, the focal length is increased slightly, as shown by Figs. 5(b)5(d). However, a desired focus can still be realized on the focal plane, which is demonstrated by Figs. 5(e)5(h).

 

Fig. 5. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.2\,\,{\rm{rad}}$. (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $. (e)–(h) Field distributions of the focal plane at $z = 11.55\,\,\unicode{x00B5}{\rm{m}}$, corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively.

Download Full Size | PPT Slide | PDF

We continued to increase the mutual rotation of the two metasurfaces to $\beta = 1.4\,\,{\rm{rad}}$. The field distributions of the focus are shown in Fig. 6. The focal length is changed to 9.896 µm, and the NA is increased to 0.81. Like those of other rotation angles, small focuses are all obtained on the focal plane for different incident angles. Therefore, a tunable and monochromatic aberration–corrected lens is able to be realized by a two-metasurface cascaded structure. The focal length is changed to 5.34 µm ($6.6\lambda $) when the rotation angle is increased by 0.4 rad.

 

Fig. 6. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.4\,\,{\rm{rad}}$. (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $. (e)–(h) Field distributions of the focal plane at $z = 9.869\,\,\unicode{x00B5}{\rm{m}}$, corresponding to the incident angle $\theta = 0^\circ $, 10°, 20°, and 30°, respectively.

Download Full Size | PPT Slide | PDF

To further study the focusing effect of the proposed lens, the focusing efficiencies corresponding to various NAs and incident angles are calculated based on the simulation results, which are shown in Fig. 7. The focusing efficiency is defined as the ratio of the focused power to the incident power [16]. The maximum focusing efficiency of 16.9% occurs when ${\rm{NA}} = 0.68$ and $\theta = 0^\circ $. When the incident angle or the NA is increased, the focusing efficiency is decreased, which has been demonstrated by other works [17,23]. The minimum focusing efficiency is only 3.4% for ${\rm{NA}} = 0.81$, and $\theta = 30^\circ $. Compared with other reported lenses composed of cascaded metasurfaces [18,19], the focusing efficiency of the proposed metalens is lower, because there is an air gap between the two metasurfaces in our structure to realize the mutual rotation of the two metasurfaces. This causes the light to be reflected and refracted between the two layers, leading to more energy loss. However, when the rotation angle changes, the nano-pillars that should be overlapped on the two metasurfaces will be misaligned, resulting in phase distribution errors and energy loss.

 

Fig. 7. Focusing efficiency of the lens dependent on NA and $\theta $.

Download Full Size | PPT Slide | PDF

 

Fig. 8. Focal lengths and focusing efficiency dependent on $\beta $.

Download Full Size | PPT Slide | PDF

We further studied the focusing effect dependent on the rotation angle $\beta $. For the traditional Moiré lens, when $\beta $ varies from 0 to $\pi $, the focal length will be decreased from infinity to $1/a\lambda $ [21], where $a$ is a constant. However, because the phases of the two metasurfaces are obtained from an even aspheric surface in our design, the focal length as a function of $\beta $ cannot be calculated theoretically. Therefore, we calculate the focal length, and the focusing efficiency varies with $\beta $ by simulations. For simplicity, only efficiencies corresponding to $\theta = 0^\circ $ or 30° are calculated. The results are shown in Fig. 8. As $\beta $ is gradually increased from 0.5 to 2.5 rad, the focal length is decreased from 31.6 to 4.9 µm, and the slope of the focal length curve is decreased with $\beta $, which is similar to that of a traditional Moiré lens. Regardless of whether $\theta = 0^\circ $ or 30°, the focusing efficiency reaches its maximum when $\beta = 1\,\,{\rm{rad}}$, because the output phase distribution for $\beta = 1\,\,{\rm{rad}}$ corresponds to the design results of Zemax. Whether $\beta $ is increased or decreased, the focusing efficiency is decreased. In addition, the focusing efficiency is always the highest for $\theta = 0^\circ $.

 

Fig. 9. Focusing effect of the lens when $d = 1000\,\,{\rm{nm}}$. (a)–(d) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1\,\,{\rm{rad}}$, when $\theta = 0^\circ $ and 30°, respectively. (e)–(h) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.2\,\,{\rm{rad}}$, when $\theta = 0^\circ $ and 30°, respectively. (i)–(l) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.4\,\,{\rm{rad}}$, when $\theta = 0^\circ $ and 30°, respectively. (m) Focusing efficiency of the lens dependent on NA and $\theta $.

Download Full Size | PPT Slide | PDF

Last but not least, the focusing performance dependent on the air gap between the two metasurfaces is studied. In the previous design and simulations, the distance between the two metasurfaces is set as $d = 100\,\,{\rm{nm}}$ to ensure that ${\varphi _{\rm{total}}} = {\varphi _1} + {\varphi _2}$ and avoid errors caused by oblique incidence. However, this is too close to be realized in practical applications. Therefore, it is necessary to conduct simulations for a larger distance. We increased the distance to $d = 1\,\,\unicode{x00B5}{\rm{m}}$, and the simulation results are shown in Fig. 8. The field distributions of the focus in the $xz$ plane and the focal plane, corresponding to various rotation angles and incident angles, are shown in Figs. 9(a)9(l). For simplicity, only distributions for $\theta = 0^\circ $ and 30° are depicted. It is found that, compared with the studies above, the focal spot becomes larger for all of the situations, which indicates the focusing effect becomes worse for larger distances due to the diffraction effect. However, the obtained focal lengths are the same as those corresponding to $d = 100\,\,{\rm{nm}}$ for all of the incident angles (15.21 µm for $\beta = 1\,\,{\rm{rad}}$, 11.55 µm for $\beta = 1.2\,\,{\rm{rad}}$, and 9.869 µm for $\beta = 1.4\,\,{\rm{rad}}$). This indicates that when $d$ is increased in a relatively small range, the metalens still maintains monochromatic aberration correction and continuous optical zooming characteristics. The focusing efficiencies for the four incident angles and three rotation angles are shown in Fig. 9(m). It is obvious that when $d$ is increased to 1 µm, the focal efficiency is decreased dramatically, especially for large incident angles. This is because for oblique incidence, the phase superposition of the two metasurfaces deviates from the designed phase distributions.

To improve the efficiency, a ${{\rm{SiO}}_2}$ layer with thickness $g$ is added in the air gap between the two metasurface layers to form a Fabry–Perot resonator. The schematic of one unit cell is depicted in Fig. 10(a). By sweeping the thickness of the ${{\rm{SiO}}_2}$ layer in the range from 0 to 1 µm, we calculate the corresponding transmission of the unit cell, which is shown in Fig. 10(b). The highest transmission occurs when $g$ is 900 nm, which is 16.8%. Therefore, a 900 nm thick silica layer is inserted in the Moiré structure of Fig. 9. The field distributions of $\beta = 1\,\,{\rm{rad}}$, corresponding to the incident angle $\theta = 0^\circ $ and 30°, are depicted in Figs. 10(c)10(f). They are similar to those in Figs. 9(a)9(d). The focal length stays 15.21 µm, but the intensity of the focus is increased. The focusing efficiencies corresponding to $\theta = 0^\circ $, 10°, 20°, and 30° are shown in Fig. 10(g). The maximum is found to be 7.7%, which is 42.6% higher than that of the structure without the ${{\rm{SiO}}_2}$ layer. This proves that adding a silica layer to the air gap of the Moiré lens improves the efficiency of the system when a small air gap is not guaranteed.

 

Fig. 10. Enhanced focusing of the Moiré structure with a ${{\rm{SiO}}_2}$ layer between the two metasurfaces. (a) Schematic of one unit cell. (b) Transmission dependent on the thickness of the ${{\rm{SiO}}_2}$ layer. (c)–(f) Field distributions of the structure with a ${{\rm{SiO}}_2}$ layer. (g) Simulated focusing efficiencies corresponding to different incident angles.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

In summary, we present a design method of a polarization-independent metalens, consisting of two cascaded metasurfaces, that can achieve both continuous zooming and monochromatic aberration correction for wide field of view. By optical design, the phase profile by which monochromatic aberrations can be corrected is obtained, and then according to the principle of the Moiré lens, a continuously tunable focus is realized by the mutual rotation of the two metasurfaces and verified by simulations. The focal plane is changed to 5.34 µm ($6.6\lambda $) when the rotation angle is increased by 0.4 rad. It is anticipated that the proposed metalens may have a good application prospect in integrated miniaturized imaging systems in biomedicine, medical imaging, and other fields.

Funding

National Key R&D Program of China (2017YFB1002900); National Natural Science Foundation of China (61875010, 61420106014).

REFERENCES

1. N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014). [CrossRef]  

2. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015). [CrossRef]  

3. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018). [CrossRef]  

4. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017). [CrossRef]  

5. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015). [CrossRef]  

6. Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018). [CrossRef]  

7. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013). [CrossRef]  

8. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015). [CrossRef]  

9. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012). [CrossRef]  

10. F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015). [CrossRef]  

11. Z. J. Ma, S. M. Hanham, Y. D. Gong, and M. H. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018). [CrossRef]  

12. E. Hecht, Optics, 5th ed. (Pearson, 2016).

13. F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015). [CrossRef]  

14. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018). [CrossRef]  

15. W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017). [CrossRef]  

16. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018). [CrossRef]  

17. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016). [CrossRef]  

18. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017). [CrossRef]  

19. R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019). [CrossRef]  

20. H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016). [CrossRef]  

21. S. Bernet and M. Ritsch-Marte, “Adjustable refractive power from diffractive Moiré elements,” Appl. Opt. 47, 3722–3730 (2008). [CrossRef]  

22. S. Bernet, W. Harm, and M. Ritsch-Marte, “Demonstration of focus-tunable diffractive Moiré-lenses,” Opt. Express 21, 6955–6966 (2013). [CrossRef]  

23. N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019). [CrossRef]  

24. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
    [Crossref]
  2. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  3. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
    [Crossref]
  4. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
    [Crossref]
  5. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  6. Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
    [Crossref]
  7. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
    [Crossref]
  8. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
    [Crossref]
  9. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  10. F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref]
  11. Z. J. Ma, S. M. Hanham, Y. D. Gong, and M. H. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018).
    [Crossref]
  12. E. Hecht, Optics, 5th ed. (Pearson, 2016).
  13. F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref]
  14. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  15. W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
    [Crossref]
  16. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
    [Crossref]
  17. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
    [Crossref]
  18. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
    [Crossref]
  19. R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
    [Crossref]
  20. H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
    [Crossref]
  21. S. Bernet and M. Ritsch-Marte, “Adjustable refractive power from diffractive Moiré elements,” Appl. Opt. 47, 3722–3730 (2008).
    [Crossref]
  22. S. Bernet, W. Harm, and M. Ritsch-Marte, “Demonstration of focus-tunable diffractive Moiré-lenses,” Opt. Express 21, 6955–6966 (2013).
    [Crossref]
  23. N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
    [Crossref]
  24. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
    [Crossref]

2019 (2)

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

2018 (5)

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Z. J. Ma, S. M. Hanham, Y. D. Gong, and M. H. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

2017 (4)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

2016 (2)

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

2015 (5)

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

2014 (1)

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

2013 (2)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

S. Bernet, W. Harm, and M. Ritsch-Marte, “Demonstration of focus-tunable diffractive Moiré-lenses,” Opt. Express 21, 6955–6966 (2013).
[Crossref]

2012 (1)

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

2008 (1)

Agarwal, R.

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Aieta, F.

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Arbabi, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Arbabi, E.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Bernet, S.

Cao, Y.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Cent, S. V.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, J.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chen, M.

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Cheng, H. C.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chieh, L. Y.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chieh, W. P.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Cui, T. J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Deng, J.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Deng, Q.

Deng, Z.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Ding, F.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Ding, J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Ee, H.-S.

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Faraon, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Fu, R.

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Gaburro, Z.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Genevet, P.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Gong, Y. D.

Groever, B.

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

Gu, J. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Han, J. G.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Hanham, S. M.

Harm, W.

He, S. L.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Hecht, E.

E. Hecht, Optics, 5th ed. (Pearson, 2016).

Hong, M. H.

Horie, Y.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Hung, L. S.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Jang, J.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ji, W.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jiang, M.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jun Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Kamali, S. M.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Kats, M.

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Kats, M. A.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Kildishev, A. V.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Kim, I.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kuan, C.-H.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kurt, H.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Kuznetsov, A. I.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, L.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Li, Y. B.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, Z.

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Liu, S.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Luk’yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Ma, Z. J.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nam, K. T.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ozdemir, A.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Ozer, A.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Paniagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Qiu, C.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Rho, J.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ritsch-Marte, M.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Shalaev, V. M.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Shi, T.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Shuming, W.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Tao, J.

Tian, Z.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Wan, X.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Wang, G. P.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, Y.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, Z. X.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wern, C. J.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Wong, P. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, L.

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Xu, B.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Xu, J.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Yang, Y.

Yilmaz, N.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Yoon, G.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Yu, N. F.

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Yue, W. S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, S.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zhang, W. L.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zhang, X. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zheng, G.

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Zhuang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

ACS Nano (1)

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

ACS Photon. (1)

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Adv. Mater. (1)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Appl. Opt. (1)

J. Opt. (1)

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Laser Photon. Rev. (1)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Light Sci. Appl. (1)

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Nano Lett. (3)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Nat. Commun. (4)

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Nat. Mater. (1)

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

Nat. Nanotechnol. (3)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Nat. Photonics (1)

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Other (1)

E. Hecht, Optics, 5th ed. (Pearson, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) and (c) Schematic illustrations of the focusing effect of a traditional lens and a monochromatic aberration–corrected lens at oblique incident angles, respectively. The blue, green, red, and yellow lines represent $\theta = {{0}}^\circ $ , 10°, 20°, and 30°, respectively. $\theta $ is the incident angle. (b) and (d) Theoretically calculated field distributions on the focal plane of corresponding metasurfaces for different incident angles. The radiuses of the two metasurfaces are both 14 µm. Scale bar: 1 µm.
Fig. 2.
Fig. 2. (a) Schematic of the tunable monochromatic aberration–corrected lens, which consists of two face-to-face metasurfaces. The focal plane is tuned by the mutual rotation angle $\beta $ of the two metasurfaces. (b) Side view of the metalens and top view of a single-layer metasurface. $d$ denotes the distance between the two metasurfaces. (c) Simulated transmission and phase of one unit cell, as a function of the nano-pillar radius. The subplot shows the structure of one unit cell.
Fig. 3.
Fig. 3. (a) and (b) Theoretically required phase profiles of the two metasurfaces, calculated by Eq. (6), when $\beta = 1\,\,{\rm{rad}}$ . (c) Superposition of the two phase-profiles in (a) and (b). (d) and (e) Simulation results of transmitted phase profiles of the two metasurfaces. (f) Simulation results of transmitted phase profile of the bilayer metasurface.
Fig. 4.
Fig. 4. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 15.21\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 5.
Fig. 5. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.2\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 11.55\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 6.
Fig. 6. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.4\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 9.869\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 7.
Fig. 7. Focusing efficiency of the lens dependent on NA and $\theta $ .
Fig. 8.
Fig. 8. Focal lengths and focusing efficiency dependent on $\beta $ .
Fig. 9.
Fig. 9. Focusing effect of the lens when  $d = 1000\,\,{\rm{nm}}$ . (a)–(d) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (e)–(h) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.2\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (i)–(l) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.4\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (m) Focusing efficiency of the lens dependent on NA and $\theta $ .
Fig. 10.
Fig. 10. Enhanced focusing of the Moiré structure with a ${{\rm{SiO}}_2}$ layer between the two metasurfaces. (a) Schematic of one unit cell. (b) Transmission dependent on the thickness of the ${{\rm{SiO}}_2}$ layer. (c)–(f) Field distributions of the structure with a ${{\rm{SiO}}_2}$ layer. (g) Simulated focusing efficiencies corresponding to different incident angles.

Tables (1)

Tables Icon

Table 1. Optimized Parameters Calculated by Zemax Optimization Design

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ ( r ) = 2 π λ ( r 2 + f 2 f ) ,
h ( i ) ( r ) = c ( i ) r 2 1 + 1 ( 1 + k ( i ) ) c ( i ) 2 r 2 + m = 1 5 a m ( i ) r 2 i ,
φ l ( r ) = 2 π λ { n 0 [ H h l ( r ) ] + n 1 h l ( r ) } ,
φ 1 ( α , r ) = α φ l ( r ) , φ 2 ( α , r ) = α φ l ( r ) ,
φ t o t a l = α φ l ( r ) ( α β ) φ l ( r ) = β φ l ( r ) ,
φ 1 ( α , r ) = α r o u n d [ φ l ( r ) ] , φ 2 ( α , r ) = α r o u n d [ φ l ( r ) ] .

Metrics