Abstract

A theoretical analysis is given for laser cooling of a two-level atom with magnetic sublevels in the presence of polarization gradients. The optical Bloch equations for the multilevel system are solved numerically for four combinations of polarizations in one-dimensional optical molasses. The light-pressure force on the atom as given by a simple two-level theory is recovered in the absence of polarization gradients, whereas a spatial variation of the polarization is found to lead to a strong cooling force for slow atoms. The increased cooling force is responsible for the recent observations of atoms cooled in optical molasses to temperatures an order of magnitude below the Doppler limit.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical molasses and multilevel atoms: experiment

David S. Weiss, Erling Riis, Yaakov Shevy, P. Jeffrey Ungar, and Steven Chu
J. Opt. Soc. Am. B 6(11) 2072-2083 (1989)

Optical molasses

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook
J. Opt. Soc. Am. B 6(11) 2084-2107 (1989)

σ+–σ Optical molasses in a longitudinal magnetic field

M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips
J. Opt. Soc. Am. B 9(11) 1997-2007 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription