Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

Not Accessible

Your library or personal account may give you access

Abstract

The properties of surface waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
s-polarized guided and surface electromagnetic waves supported by a nonlinear dielectric film

Wei Chen and Alexei A. Maradudin
J. Opt. Soc. Am. B 5(2) 529-538 (1988)

S-Polarized surface electromagnetic waves in inhomogeneous media: exactly solvable models

Alexander Shvartzburg, Guillaume Petite, and Nicole Auby
J. Opt. Soc. Am. B 16(6) 966-970 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.