Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-step model for third-harmonic generation in air by nanosecond lasers

Not Accessible

Your library or personal account may give you access

Abstract

Understanding the phenomena involved in harmonic generation in plasmas by high-power pulsed lasers is a paramount task for developing new techniques for generation of coherent radiation in ultrashort bursts. Although first experiments on harmonic generation involved nanosecond lasers and inspired further interest in the subject, numerical simulations on harmonic generation are currently mainly oriented toward ultrashort fs lasers. This paper presents a combined theoretical–experimental approach to the generation mechanisms and the properties of third-harmonic (TH) radiation generated by infrared nanosecond laser pulses in air-breakdown plasma. The paper indicates that, at the microscopic level, the generation of TH can be described by a three-step model, which involves breakdown of nitrogen molecules in the air. First, the nitrogen molecules undergo cascade-impact ionization; then, the ionized molecules are quasi-resonantly excited through three-photon absorption; in the third step, the nitrogen molecules de-excite to the fundamental level with associated emission of TH radiation. At the macroscopic level, the three-step model is implemented considering that the breakdown plasma is a conductive nonlinear medium whose third-order susceptibility and complex conductivity depend upon the cubic root of the driving laser intensity. The 2D numerical simulations performed in the frame of this model are in good agreement with the experimental data in terms of TH generation efficiency, collimation, and polarization of TH radiation, indicating the validity of the theoretical model presented here. The model enables realistic calculations with affordable computing power for prediction and control of the TH generation process driven by nanosecond laser pulses. The results are important from the fundamental and practical points of view, thus providing an efficient tool for prediction of nonlinear optical phenomena in laser-produced plasmas and for noncontact diagnosis of harmonic-generating plasmas.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Third-order harmonic generation in a bi-chromatic elliptical laser field

Tao He, Yizhu Zhang, J. J. Zhao, Xincheng Wang, Zhenjie Shen, Zuanming Jin, Tian-Min Yan, and Yuhai Jiang
Opt. Express 29(14) 21936-21946 (2021)

Characterization of laser-induced air plasmas by third harmonic generation

Cristina Rodríguez, Zhanliang Sun, Zhenwei Wang, and Wolfgang Rudolph
Opt. Express 19(17) 16115-16125 (2011)

Third-harmonic generation in air by use of femtosecond radiation in tight-focusing conditions

Rashid A. Ganeev, Masayuki Suzuki, Motoyoshi Baba, Hiroto Kuroda, and Ilia A. Kulagin
Appl. Opt. 45(4) 748-755 (2006)

Data Availability

The data that support the findings of this study are available within the paper.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.