Abstract

With the advances in the field of plasmonics, techniques for trapping and localizing light have become more feasible at the nanoscale. Several works have shown that plasmonics-based photovoltaic devices have yielded an improved absorption capability, enabling the design of thin-layered photovoltaic absorbers. In this review, we shed light on recent advances that employ plasmonics and nano-sized structures and thin-film technologies intended to increase solar cell efficiency. In this work, we provide an overview of the challenges associated with developing high-efficiency solar cells. Despite significant efforts by numerous groups to improve the efficiency of solar cells, practical realization of these concepts has yet to materialize. The conclusions made here hope to encourage researchers to re-examine the factors and challenges that could have created barriers to full realization of all concepts proposed over the past 15 years. In fact, because of the immense impact of improving the efficiency of solar cells on the environment and economy, it is hoped that this review encourages new technology paradigms that can be translated into commercially viable products.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer

Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang
Opt. Express 18(3) 2682-2694 (2010)

Enhanced efficiency of graded-bandgap thin-film solar cells due to concentrated sunlight

Faiz Ahmad, Akhlesh Lakhtakia, and Peter B. Monk
Appl. Opt. 60(34) 10570-10578 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics