Abstract

We derive an analytical formulation of the Raman-induced frequency shift experienced by a fundamental soliton. By including propagation losses, self-steepening, and dispersion slope, the resulting formulation is a high-order (HO) extension of the well-known Gordon’s formula for soliton self-frequency shift (SSFS). The HO-SSFS formula agrees closely with numerical results of the generalized nonlinear Schrödinger equation, but without the computational complexity and required computation time. The HO-SSFS formula is a useful tool for the design and validation of wavelength conversion systems and supercontinuum generation systems.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift

Ravi Pant, Alexander C. Judge, Eric C. Magi, Boris T. Kuhlmey, Martijn de Sterke, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 27(9) 1894-1901 (2010)

Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans
J. Opt. Soc. Am. B 27(11) 2328-2335 (2010)

High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber

M. G. Banaee and Jeff F. Young
J. Opt. Soc. Am. B 23(7) 1484-1489 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (64)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics