Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization ray tracing in thermally loaded solid-state laser crystals

Not Accessible

Your library or personal account may give you access

Abstract

A new ray tracing method for the propagation of electrical fields in inhomogeneous and weakly anisotropic media is presented. With this method, we can efficiently simulate the propagation of laser beams in solid-state laser amplifiers, which suffer from high thermal loads. As a result of this method, we can find optical compensation setups that significantly reduce the depolarization losses in high-power solid-state amplifiers. To the best of our knowledge, we theoretically demonstrate for the first time that [100]-cut YAG crystals reduce the depolarization by more than a magnitude in comparison to [111]-cut crystals while achieving an overall better beam quality at the same time.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.