Abstract

We present a topology optimization method for a 1D dielectric metasurface, coupling the classical fluctuations-trend analysis (FTA) and diamond-square algorithm (DSA). In classical FTA, a couple of device distributions termed fluctuation or mother and trends or father, with specific spectra, is initially generated. The spectral properties of the trend function allow one to efficiently target the basin of optimal solutions. For optimizing a 1D metasurface to deflect a normally incident plane wave into a given deflecting angle, a cosine-like function has been identified to be an optimal father profile, allowing one to efficiently target a basin of local minima. However, there is no efficient method to predict the father profile number of oscillations that effectively allows one to avoid undesirable local optima. It would be natural to suggest a randomization of the variable that controls the number of oscillations of the father function. However, one of the main drawbacks of the randomness searching process is that, combined with a gradient method, the algorithm can target undesirable local minima. The method proposed in this paper improves the possibility of classical FTA to avoid the trapping of undesirable local optimal solutions. This is accomplished by extending the initial candidate family to higher-quality offspring that are generated due to the DSA. Doing so ensures that the main features of the best trends are stored in the genes of all offspring structures.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of material selection on dielectric metasurface performance

Jianji Yang and Jonathan A. Fan
Opt. Express 25(20) 23899-23909 (2017)

Design and optimization of ellipsoid scatterer-based metasurfaces via the inverse T-matrix method

Maksym V. Zhelyeznyakov, Alan Zhan, and Arka Majumdar
OSA Continuum 3(1) 89-103 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics