Abstract

In this paper, it is shown that non-reciprocity can be observed in time-varying media without employing spatiotemporal modulated permittivities. We show that by using only two one-dimensional Fabry–Perot slabs with time-periodic permittivities having quadrature-phase difference, it is possible to achieve considerable non-reciprocity in transmission at the incidence frequency. To analyze such a scenario, generalized transfer matrices are introduced to find the wave amplitudes of all harmonics in all space. The results are verified by in-house finite-difference time-domain simulations. Moreover, in order to have a simple model of such time-varying slab resonators, a time-perturbed coupled-mode theory is developed for multiple resonances, and it is shown that the results obtained by this method and the analytical method are in excellent agreement.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband on-chip optical non-reciprocity using phase modulators

Christophe Galland, Ran Ding, Nicholas C. Harris, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 21(12) 14500-14511 (2013)

Optomechanically induced non-reciprocity in microring resonators

Mohammad Hafezi and Peter Rabl
Opt. Express 20(7) 7672-7684 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription