Abstract

In this paper, we report an all-fiber supercontinuum source pumped with ultra-short pulses at 1.9–2.0 μm, covering over an octave (1200–2400 nm). We investigated the shot-to-shot stability of the supercontinuum generated in a commercially available highly nonlinear fiber (HNLF) of different lengths, ranging from 5 to 80 cm, by employing the dispersive Fourier transform method. Our study shows that using shorter HNLFs significantly improves the shot-to-shot stability while maintaining the broad spectral coverage. The supercontinuum generated in HNLFs shorter than 10 cm is characterized by excellent stability despite the anomalous-dispersion characteristic of the fiber. The presented source is characterized by exceptional simplicity, showing readiness for outside-of-lab applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump

Mariusz Klimczak, Grzegorz Soboń, Krzysztof Abramski, and Ryszard Buczyński
Opt. Express 22(26) 31635-31645 (2014)

Real time noise and wavelength correlations in octave-spanning supercontinuum generation

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley
Opt. Express 21(15) 18452-18460 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
    [Crossref]
  3. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  4. S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Mörz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
    [Crossref]
  5. F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express 26, 13952–13960 (2018).
    [Crossref]
  6. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
    [Crossref]
  7. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [Crossref]
  8. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [Crossref]
  9. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
    [Crossref]
  10. V. V. R. K. Kumar, A. George, J. Knight, and P. St.J. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11, 2641–2645 (2003).
    [Crossref]
  11. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
    [Crossref]
  12. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  13. C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  14. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [Crossref]
  15. M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
    [Crossref]
  16. A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
    [Crossref]
  17. I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref]
  18. J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. Leong Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
    [Crossref]
  19. M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
    [Crossref]
  20. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
    [Crossref]
  21. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [Crossref]
  22. J. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8, 651–659 (2002).
    [Crossref]
  23. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
    [Crossref]
  24. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref]
  25. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
    [Crossref]
  26. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
    [Crossref]
  27. J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2017).
    [Crossref]
  28. J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
    [Crossref]
  29. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref]
  30. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  31. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref]
  32. R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
    [Crossref]
  33. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38, 4327–4330 (2013).
    [Crossref]
  34. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
    [Crossref]

2018 (3)

2017 (3)

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Mörz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2017).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

2016 (4)

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. Leong Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
[Crossref]

D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
[Crossref]

2014 (3)

2013 (5)

2012 (2)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

2011 (1)

2010 (3)

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
[Crossref]

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

2009 (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

2008 (2)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
[Crossref]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

2005 (1)

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

2003 (1)

2002 (1)

J. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8, 651–659 (2002).
[Crossref]

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

1986 (1)

Abdel-Moneim, N.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abramski, K.

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Aguergaray, C.

Alvarez, O.

Bandelow, U.

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Bang, O.

Bartelt, H.

Bedford, R.

Ben Salem, A.

Benson, T.

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bernier, M.

Bérubé, N.

Boguslawski, J.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Bookey, H. T.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Bosman, G. W.

Brilland, L.

Broderick, N. G. R.

Buczynski, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Châtigny, S.

Chen, H.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Chenard, F.

Choi, D.-Y.

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8, 651–659 (2002).
[Crossref]

Cozic, S.

Demircan, A.

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Désévédavy, F.

Dias, F.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Dudley, J.

J. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8, 651–659 (2002).
[Crossref]

Dudley, J. M.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dupont, S.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Erkintalo, M.

Feng, G.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Freeman, M. J.

Froidevaux, P.

Fuchs, P.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Furniss, D.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

Genty, G.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A.

Gerschuetz, F.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Gibson, R.

Giessen, H.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

Godin, T.

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

Guelachvili, G.

Guo, K.

Hartung, A.

Heidt, A. M.

Hildebrandt, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

Ho, D.

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Ifarraguerri, A. I.

Islam, M. N.

Jain, D.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

Janiszewski, B.

Jules, J.-C.

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Kar, A. K.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Kasztelanic, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Kedenburg, S.

Kibler, B.

Klimczak, M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Knight, J.

Koeth, J.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Krok, P.

Kubat, I.

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Kujawa, I.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Kumar, V. V. R. K.

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Larger, L.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Laurell, F.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Leong Tan, E.

Li, N.

Lindberg, R.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Liu, J.

Liu, K.

Luo, J.

Luther-Davies, B.

Ma, P.

Madden, S.

Mandon, J.

Martinez, R. A.

Martynkien, T.

Maynard, R. L.

Maze, G.

McCarthy, J. E.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Méchin, D.

Mergo, P.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Michalska, M.

Mitschke, F. M.

Mollenauer, L. F.

Møller, U.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Møller, U. V.

Mörz, F.

Moselund, P. M.

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Naehle, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

Pasiskevicius, V.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Pasternak, I.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Picqué, N.

Plant, G.

Pleau, L.-P.

Poulain, S.

Przewloka, A.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

Pysz, D.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Ramsay, J.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Robichaud, L.-R.

Rohwer, E. G.

Rosenberg Petersen, C.

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Runge, A. F. J.

Russell, P. St.J.

Rutkowski, L.

Schunemann, P. G.

Schwoerer, H.

Seddon, A.

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shen, Y.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Shi, H.

Sidharthan, R.

Smektala, F.

Sobon, G.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2017).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Sotor, J.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2017).
[Crossref]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Steinle, T.

Steinmann, A.

Stepien, R.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Strutynski, C.

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

Sujecki, S.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sun, B.

Swiderski, J.

Sylvestre, T.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Taghizadeh, M. R.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

Tan, F.

Tang, Z.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, M.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Terry, F. L.

Théberge, F.

Tsia, K. K.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

Vallée, R.

Waddie, A. J.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

Wang, P.

Wang, Q.

Wang, R.

Wang, T.

Wang, Z.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Wetzel, B.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Yan, Z.

Yang, Z.

Ye, X.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Yoo, S.

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

Yu, T.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

Yu, X.

Yu, Y.

Zeller, W.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Zghal, M.

Zhou, B.

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. B (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8, 651–659 (2002).
[Crossref]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewłoka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 2284–2286 (2006).
[Crossref]

J. Eur. Opt. Soc (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5  μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett. 7, 666–672 (2010).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2017).
[Crossref]

Nat. Photonics (2)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

C. Rosenberg Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Commun. (1)

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Opt. Express (10)

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. Leong Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
[Crossref]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

V. V. R. K. Kumar, A. George, J. Knight, and P. St.J. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11, 2641–2645 (2003).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express 26, 13952–13960 (2018).
[Crossref]

D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (3)

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6, 23759 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Sensors (1)

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup of the supercontinuum source.
Fig. 2.
Fig. 2. Measured dispersion profiles of the used fibers: (a) OFS HNLF2000 supercontinuum fiber, (b) SM1950 DFT fiber.
Fig. 3.
Fig. 3. Supercontinuum spectra obtained with various HNLF lengths.
Fig. 4.
Fig. 4. Setup of the DFT experiment. OSA, optical spectrum analyzer; PD, photodiode.
Fig. 5.
Fig. 5. Time–wavelength mapping curve calculated from Eq. (1) used for retrieving supercontinuum spectra from the oscilloscope traces. The green part of the curve highlights the ambiguity region for wavelengths on opposite sides of the ZDW in our supercontinua.
Fig. 6.
Fig. 6. Comparison between supercontinuum spectra observed directly after the HNLF2000 (upper trace, blue line) after passing 500 m of the SM1950 DFT fiber (bottom trace, red line) and spectrum retrieved from the DFT mapping (middle trace, black line). The green part indicates wavelengths contained in the ambiguity region.
Fig. 7.
Fig. 7. Superimposed spectra (colored areas) and corresponding mean spectra (black solid lines) for SC generated in HNLFs of different lengths.
Fig. 8.
Fig. 8. Noise curves represented by the standard deviation (std) for different wavelengths over all of the collected pulses.
Fig. 9.
Fig. 9. Correlation maps for SC spectra generated in HNLFs of different lengths, as indicated above each correlation map.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(ω)=m=1βm+1m!·(ωω0)mz,

Metrics