Abstract

Chirality is important in the fields of science and engineering. In comparison to 3D nanostructures, planar nanostructures have a great advantage of easy fabrication. However, previous studies on planar chiroptical effects were limited by the mechanism of enhancing the CD effect. In this paper, a narrow gap is designed between two single planar L-shaped nanorods to facilitate gap plasmon coupling and induce the splitting of the quadrupole mode. This splitting can enhance the circular dichroism (CD) effect. Simulated results also proclaim that CD properties are manipulated by geometrical parameters. The structural design and the new mechanism of the CD effect may provide a novel method for chiral manipulations of light and chiral optical devices.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Enhanced circular dichroism of crossed nanorods with nanowire

Mingyan Wang, Fei Wang, Yu Qu, Tiankun Wang, Yuyan Chen, Yu Bai, and Zhongyue Zhang
Appl. Opt. 57(23) 6721-6724 (2018)

Circular dichroism enhancement in plasmonic nanorod metamaterials

D. Vestler, I. Shishkin, E. A. Gurvitz, M. E. Nasir, A. Ben-Moshe, A. P. Slobozhanyuk, A. V. Krasavin, T. Levi-Belenkova, A. S. Shalin, P. Ginzburg, G. Markovich, and A. V. Zayats
Opt. Express 26(14) 17841-17848 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
    [Crossref]
  2. B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
    [Crossref]
  3. M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
    [Crossref]
  4. H. Margaryan, N. Tabirian, T. Sargsyan, P. Gasparyan, N. Hakobyan, V. Abrahamyan, H. Chilingaryan, and D. Pokhsraryan, “Device for real-time measuring of circular dichroism at a specific wavelength,” J. Opt. Soc. Am. B 36, D66–D69 (2019).
    [Crossref]
  5. L. Ouyang, W. Wang, D. Rosenmann, D. A. Czaplewski, J. Gao, and X. Yang, “Near-infrared chiral plasmonic metasurface absorbers,” Opt. Express 26, 31484–31489 (2018).
    [Crossref]
  6. D. Vestler, I. Shishkin, E. A. Gurvitz, M. E. Nasir, A. Ben-Moshe, A. P. Slobozhanyuk, A. V. Krasavin, T. Levi-Belenkova, A. S. Shalin, P. Ginzburg, G. Markovich, and A. V. Zayats, “Circular dichroism enhancement in plasmonic nanorod metamaterials,” Opt. Express 26, 17841–17848 (2018).
    [Crossref]
  7. X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
    [Crossref]
  8. B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
    [Crossref]
  9. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref]
  10. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref]
  11. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
    [Crossref]
  12. C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
    [Crossref]
  13. M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
    [Crossref]
  14. L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21, 5239–5246 (2013).
    [Crossref]
  15. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
    [Crossref]
  16. Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
    [Crossref]
  17. W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
    [Crossref]
  18. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20, 26012–26020 (2012).
    [Crossref]
  19. S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
    [Crossref]
  20. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
    [Crossref]
  21. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
    [Crossref]
  22. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16, 11802–11807 (2008).
    [Crossref]
  23. W. X. Huang, Y. Zhang, X. M. Tang, L. S. Cai, J. W. Zhao, L. Zhou, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36, 3359–3361 (2011).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  25. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
    [Crossref]
  26. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
    [Crossref]
  27. H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
    [Crossref]
  28. D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
    [Crossref]
  29. S. Liang, W. Zhang, J. Yuan, J. Jiang, J. Qian, J. Shu, and L. Jiang, “In-plane gap plasmon induced strong circular dichroism in double-layer Archimedean planar metamaterials,” Opt. Mater. Express 8, 2870–2879 (2018).
    [Crossref]
  30. M. Zhang, Q. Lu, and H. Zheng, “Tunable circular dichroism created by surface plasmons in bilayer twisted tetramer nanostructure arrays,” J. Opt. Soc. Am. B 35, 689–693 (2018).
    [Crossref]

2019 (1)

2018 (7)

L. Ouyang, W. Wang, D. Rosenmann, D. A. Czaplewski, J. Gao, and X. Yang, “Near-infrared chiral plasmonic metasurface absorbers,” Opt. Express 26, 31484–31489 (2018).
[Crossref]

D. Vestler, I. Shishkin, E. A. Gurvitz, M. E. Nasir, A. Ben-Moshe, A. P. Slobozhanyuk, A. V. Krasavin, T. Levi-Belenkova, A. S. Shalin, P. Ginzburg, G. Markovich, and A. V. Zayats, “Circular dichroism enhancement in plasmonic nanorod metamaterials,” Opt. Express 26, 17841–17848 (2018).
[Crossref]

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

S. Liang, W. Zhang, J. Yuan, J. Jiang, J. Qian, J. Shu, and L. Jiang, “In-plane gap plasmon induced strong circular dichroism in double-layer Archimedean planar metamaterials,” Opt. Mater. Express 8, 2870–2879 (2018).
[Crossref]

M. Zhang, Q. Lu, and H. Zheng, “Tunable circular dichroism created by surface plasmons in bilayer twisted tetramer nanostructure arrays,” J. Opt. Soc. Am. B 35, 689–693 (2018).
[Crossref]

2017 (4)

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
[Crossref]

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

2016 (3)

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

2015 (1)

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
[Crossref]

2014 (1)

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

2013 (4)

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21, 5239–5246 (2013).
[Crossref]

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

2012 (3)

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20, 26012–26020 (2012).
[Crossref]

2011 (1)

2010 (2)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

2009 (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

2008 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Abrahamyan, V.

Alivisatos, A. P.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
[Crossref]

Appavoo, K.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Aydin, K.

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Ben-Moshe, A.

Butun, S.

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Cai, L. S.

Cheng, Y.

Chilingaryan, H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Czaplewski, D. A.

de Moura, A. F.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Dong, J.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

Duan, H.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

Duan, J.

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

Fernández-Domínguez, A. I.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Ferry, V. E.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
[Crossref]

Gansel, J. K.

Gao, J.

Gasparyan, P.

Giessen, H.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Ginzburg, P.

Gong, R.

Gong, Y.

Govorov, A. O.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Guo, L.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

Gupta, S.

S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
[Crossref]

Gurvitz, E. A.

Haglund, R. F.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Hakobyan, N.

Hentschel, M.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
[Crossref]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Hong, M.

Hopkins, B.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

Hu, H.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

Huang, C.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Huang, C. P.

Huang, L.

Huang, W. X.

Jia, B.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Jiang, J.

Jiang, L.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kaschke, J.

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Khosravi Khorashad, L.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

Kim, K.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

Kivshar, Y. S.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

Kong, X. T.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

Kotov, N. A.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

Krasavin, A. V.

Kuang, H.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Kwon, D. H.

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Lei, D. Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Levi-Belenkova, T.

Li, J.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Li, M.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

Li, Y.

Li, Z.

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Li, Z. Y.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Liang, S.

Lin, H.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Liu, Z.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Lu, Q.

Lu, Z.

Luo, X.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Ma, W.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Ma, X.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Ma, Z.

Maier, S. A.

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Margaryan, H.

Markovich, G.

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Miroshnichenko, A. E.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Nasir, M. E.

Nicotra, G.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Ouyang, L.

Palacios, E.

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Park, J. I.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Pendry, J. B.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

Poddubny, A. N.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

Pokhsraryan, D.

Pu, M.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Qian, J.

Qu, Y.

Rosenmann, D.

Sargsyan, T.

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Saxena, J. K.

S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
[Crossref]

Schäferling, M.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Schnell, M.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Scuderi, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Shalin, A. S.

Shen, Z. X.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

Shishkin, I.

Shu, J.

Shvets, G.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Slobozhanyuk, A. P.

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

Sonnefraud, Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

Tabirian, N.

Tang, B.

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Tang, X. M.

Tang, Y.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Tian, X.

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Vestler, D.

Wang, L.

Wang, Q. J.

Wang, W.

Wang, Y.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Wang, Z.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

Wegener, M.

Werner, D. H.

Werner, P. L.

Wu, L.

Wu, X.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Xu, C.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Xu, L.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

Yadav, S.

S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
[Crossref]

Yang, H.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

Yang, J. K.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

Yang, X.

Yang, Z.

Yeom, B.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

Yi, G.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Yuan, J.

Yuan, X.

Zayats, A. V.

Zhang, H.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

Zhang, M.

Zhang, P.

Zhang, W.

Zhang, Y.

Zhang, Z.

Zhao, J. W.

Zhao, M.

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

Zheng, H.

Zheng, Y.

Zhou, L.

Zhu, Y. Y.

ACS Nano (2)

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[Crossref]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6, 1380–1386 (2012).
[Crossref]

ACS Photonics (1)

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2, 1253–1259 (2015).
[Crossref]

Appl. Phys. Lett. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[Crossref]

Chem. Rev. (1)

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral inorganic nanostructures,” Chem. Rev. 117, 8041–8093 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29, 295–298 (2017).
[Crossref]

Int. J. Biol. Macromol. (1)

S. Yadav, S. Gupta, and J. K. Saxena, “Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and circular dichroism spectroscopy,” Int. J. Biol. Macromol. 102, 986–995 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D. Appl. Phys. (1)

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D. Appl. Phys. 47, 185102 (2014).
[Crossref]

Laser Photonics Rev. (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10, 137–146 (2016).
[Crossref]

Nano Lett. (5)

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13, 5277–5283 (2013).
[Crossref]

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18, 2001–2008 (2018).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable extreme chirality in the visible by helix-shaped metamaterial platform,” Nano Lett. 16, 5823–5828 (2016).
[Crossref]

Nanoscale (1)

X. Tian, Z. Liu, H. Lin, B. Jia, Z. Y. Li, and J. Li, “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism,” Nanoscale 10, 16630–16637 (2018).
[Crossref]

Nat. Commun. (1)

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref]

Opt. Commun. (1)

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90 polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of DL nanorod arrays; (b) its unit cell with the associated parameter definitions.
Fig. 2.
Fig. 2. Optical absorption and circular dichroism properties under circularly polarized light excitation. (a) SL nanorods, (b) DL nanorods. The three resonances are labeled as Modes I, II, and III.
Fig. 3.
Fig. 3. Surface current distributions of (a)–(d) SL nanorods and (e)–(j) DL nanorods at different resonant modes. The green solid arrows are electric moments.
Fig. 4.
Fig. 4. CD spectra of the DL nanorods with (a) varied ${l_x}$ values and (b) varied ${l_y}$ values.
Fig. 5.
Fig. 5. Electric field distributions of DL nanorods at different resonant modes under (a), (c), and (e) LCP light excitation and (b), (d), and (f) RCP light excitation.
Fig. 6.
Fig. 6. CD spectra of the DL nanorods with different $g$ values.
Fig. 7.
Fig. 7. CD spectra of the DL nanorods with different ${w_2}$ values.
Fig. 8.
Fig. 8. CD spectra of the DL nanorods with different $s$ values (the inset shows the definition of $s$ ).

Metrics