Abstract

We report the spectral behavior and averaged output power of a supercontinuum beam generated with an ytterbium (Yb)-doped double-clad passive fiber as a gain media for an amplifier with a mode-locked oscillator at a repetition rate of 10 MHz. The flat spectra was observed with a wavelength and average power of 6.2 W in the near-infrared spectral range of 1–2.3 μm, which represents a bandwidth of 1.1 μm at the 20-m-long Yb-doped double-clad passive fiber.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system

Xingliang Li, Shumin Zhang, Yanping Hao, and Zhenjun Yang
Opt. Express 22(6) 6699-6706 (2014)

Limits of coherent supercontinuum generation in normal dispersion fibers

Alexander M. Heidt, James S. Feehan, Jonathan H. V. Price, and Thomas Feurer
J. Opt. Soc. Am. B 34(4) 764-775 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Farrow and L. A. Rahn, “Spatially resolved infrared absorption measurements: application of an optical Stark effect,” Opt. Lett. 6, 108–110 (1981).
    [Crossref]
  2. N. Barkay and A. Katzir, “Mechanical fatigue monitoring using absorption spectroscopy of infrared fibers,” Appl. Phys. Lett. 63, 1762–1764 (1993).
    [Crossref]
  3. C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
    [Crossref]
  4. A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
    [Crossref]
  5. G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
    [Crossref]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  7. A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
    [Crossref]
  8. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004).
    [Crossref]
  9. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
    [Crossref]
  10. P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, C. Lesvigne, V. Couderc, P. Leproux, A. Tonello, and P. Georges, “Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy,” Opt. Express 16, 18844–18849 (2008).
    [Crossref]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
    [Crossref]
  12. H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
    [Crossref]
  13. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, M. Pang, R. Sopalla, M. H. Frosz, S. Poulain, M. Poulain, V. Cardin, J. C. Travers, and P. St. J. Russell, “Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores,” Opt. Lett. 41, 4245–4248 (2016).
    [Crossref]
  14. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  15. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [Crossref]
  16. I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15, 305–307 (1990).
    [Crossref]
  17. T. Hori, N. Nishizawa, and T. Goto, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
    [Crossref]
  18. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005).
    [Crossref]
  19. P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
    [Crossref]
  20. A. Roy, P. Leproux, P. Roy, J.-L. Auguste, and V. Couderc, “Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber,” J. Opt. Soc. Am. B 24, 788–791 (2007).
    [Crossref]
  21. P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, “High spectral power density supercontinuum generation in a nonlinear fiber amplifier,” Opt. Express 15, 11358–11363 (2007).
    [Crossref]
  22. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
    [Crossref]
  23. J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, “Ultra-broad bandwidth parametric amplification at degeneracy,” Opt. Express 13, 7386–7392 (2005).
    [Crossref]
  24. M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
    [Crossref]
  25. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  26. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [Crossref]
  27. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
    [Crossref]

2017 (2)

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (3)

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

2009 (1)

2008 (2)

2007 (4)

2006 (2)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (2)

2004 (2)

2003 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[Crossref]

2002 (2)

2000 (1)

1993 (1)

N. Barkay and A. Katzir, “Mechanical fatigue monitoring using absorption spectroscopy of infrared fibers,” Appl. Phys. Lett. 63, 1762–1764 (1993).
[Crossref]

1990 (1)

1981 (1)

Aalto, A.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Aguergaray, C.

Amiot, C.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Antaris, A. L.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

Auguste, J.-L.

Babic, F.

Barkay, N.

N. Barkay and A. Katzir, “Mechanical fatigue monitoring using absorption spectroscopy of infrared fibers,” Appl. Phys. Lett. 63, 1762–1764 (1993).
[Crossref]

Barthélémy, A.

Bigot, L.

Birks, T. A.

Blandin, P.

Bors, K.

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

Bouwmans, G.

Buckley, J.

Cardin, V.

Champert, P. A.

Chen, H.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Chen, S.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Chen, Z.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Chi, J.-J.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Chong, A.

Clausnitzer, T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cormier, E.

Couderc, V.

Dai, H.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

Descamps, D.

Druon, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Farrow, R. L.

Finger, M. A.

Frosz, M. H.

Fuchs, H.-J.

Gaida, C.

Gebhardt, M.

Genty, G.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Georges, P.

Gmachl, C. F.

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

Golub, I.

Goto, T.

Hädrich, S.

Hanna, M.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[Crossref]

Hong, G.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

Hori, T.

Hou, J.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[Crossref]

Jauregui, C.

Jiang, D.-S.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Jiang, X.

Joly, N. Y.

Katzir, A.

N. Barkay and A. Katzir, “Mechanical fatigue monitoring using absorption spectroscopy of infrared fibers,” Appl. Phys. Lett. 63, 1762–1764 (1993).
[Crossref]

Kley, E.-B.

Knight, J. C.

Kobtsev, S. M.

Kudlinski, A.

Lacroix, S.

Le Rouge, A.

Leproux, P.

Lesvigne, C.

Lévêque-Fort, S.

Li, P.-X.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Li, Y.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Liakat, S.

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

Limpert, J.

Liu, Z.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Lu, Q.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Man, T.-P. M.

Manek-Hönninger, I.

Mélin, G.

Michel, A. P. M.

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

Montant, S.

Mussot, A.

Nishizawa, N.

Ortigosa-Blanch, A.

Pang, M.

Petit, S.

Pioger, P. H.

Poulain, M.

Poulain, S.

Quiquempois, Y.

Rahn, L. A.

Renninger, W.

Renninger, W. H.

Roy, A.

Roy, P.

Russell, P. St. J.

Ryczkowski, P.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Salin, F.

Schreiber, T.

Smirnov, S. V.

Sopalla, R.

Stutzki, F.

Takayanagi, J.

Toivonen, J.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Tonello, A.

Travers, J. C.

Tünnermann, A.

Vanvincq, O.

Wadsworth, W. J.

Wang, X.-F.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Wise, F.

Wise, F. W.

Yang, C.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Zellmer, H.

Zhao, H.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Zhao, Z.-Q.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Zhong, G.-S.

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Zöllner, K.

Appl. Phys. B (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[Crossref]

Appl. Phys. Express (1)

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6, 032702 (2013).
[Crossref]

Appl. Phys. Lett. (2)

N. Barkay and A. Katzir, “Mechanical fatigue monitoring using absorption spectroscopy of infrared fibers,” Appl. Phys. Lett. 63, 1762–1764 (1993).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Bio. Opt. Express (1)

A. P. M. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Bio. Opt. Express 4, 520–530 (2013).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (1)

P.-X. Li, Z. Liu, J.-J. Chi, C. Yang, Z.-Q. Zhao, Y. Li, X.-F. Wang, G.-S. Zhong, H. Zhao, and D.-S. Jiang, “A picosecond ytterbium-doped double-clad fiber amplifier with a SESAM mode locking PCF oscillator as the seed source,” Laser Phys. Lett. 10, 075104 (2013).
[Crossref]

Nat. Biomed. Eng. (1)

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

Opt. Express (7)

Opt. Lett. (8)

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref]

R. L. Farrow and L. A. Rahn, “Spatially resolved infrared absorption measurements: application of an optical Stark effect,” Opt. Lett. 6, 108–110 (1981).
[Crossref]

I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15, 305–307 (1990).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, M. Pang, R. Sopalla, M. H. Frosz, S. Poulain, M. Poulain, V. Cardin, J. C. Travers, and P. St. J. Russell, “Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores,” Opt. Lett. 41, 4245–4248 (2016).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[Crossref]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
[Crossref]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of the experimental apparatus. The system consists of an ANDi mode-locked fiber oscillator to produce a 4-ps pulse train at a repetition rate of 10 MHz with three different pulse energies of 1, 2, and 7 nJ. After going through the isolator between the oscillator and amplifier, the Yb-doped double-clad passive fiber was connected with a multi-mode laser diode (LD) at a wavelength of 976 nm and a maximum CW average power of 8.3 W. The output beam was characterized by use of the spectrometer, the autocollimator, and the power meter. (b) Time-integrated spectrum and (c) the temporal pulse shape of the seed pulse from the ANDi mode-locked fiber oscillator at a repetition rate of 10 MHz for the present experiments.
Fig. 2.
Fig. 2. (a) Spectra of the SC beams from a 9-m-long Yb-doped double-clad passive fiber at seed pulse energies of 1, 2, and 7 nJ per pulse. (b) Multi-mode laser diode (LD) pump power dependence of the spectral bandwidth of the SC beams at seed pulse energies of 1, 2, and 7 nJ per pulse.
Fig. 3.
Fig. 3. Spectral behavior, and the wavelength- and time-integrated output power of the SC beams as a function of the multi-mode laser diode (LD) pump power for a 9-m-long Yb-doped double-clad passive fiber at seed pulse energies of (a) 1, (b) 2, and (c) 7 nJ per pulse, respectively.
Fig. 4.
Fig. 4. (a) Spectral behavior, and the wavelength- and time-integrated output power of the SC beams as a function of the multi-mode laser diode (LD) pump power for a 20-m-long Yb-doped double-clad passive fiber at seed pulse energy of 7 nJ per pulse, respectively. (b) Spectrum with an output power of 6.2 W of the SC beam at the multi-mode LD power of 16 W.
Fig. 5.
Fig. 5. Beam profile of the output SC beam from the Yb-doped double-clad passive fiber.