Abstract

We report on the conversion of an infrared vector beam into terahertz vortex beams using a 110-cut ZnTe cubic crystal. First, we provide a theoretical analysis demonstrating how an infrared vector beam with the azimuthal order can be transformed into a terahertz beam endowed with an orbital angular moment content that consists of optical vortices with topological charge ±2. Experimentally, quasi-monochromatic terahertz vortex beams with topological charges +2 and 2 are produced and characterized both in amplitude and phase using real-time two-dimensional imaging of the terahertz electric field. These results enrich the terahertz vortex beam toolbox via the transfer of topological information from the infrared to terahertz domains.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation and evolution of the terahertz vortex beam

Jingwen He, Xinke Wang, Dan Hu, Jiasheng Ye, Shengfei Feng, Qiang Kan, and Yan Zhang
Opt. Express 21(17) 20230-20239 (2013)

Topological structures in vector-vortex beam fields

Vijay Kumar and Nirmal K. Viswanathan
J. Opt. Soc. Am. B 31(6) A40-A45 (2014)

Hybrid generation and analysis of vector vortex beams

Sandra Mamani, Ethan Bendau, Jeff Secor, Solyman Ashrafi, Jiufeng J. Tu, and Robert R. Alfano
Appl. Opt. 56(8) 2171-2175 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [Crossref]
  2. P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  3. “Terahertz optics taking off,” Special issue of Nature Photonics7, 665 (2013).
    [Crossref]
  4. R. A. Lewis, “A review of terahertz sources,” J. Phys. D 47, 374001 (2014).
    [Crossref]
  5. G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
    [Crossref]
  6. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015).
    [Crossref]
  7. X. Wang, J. Shi, W. Sun, S. Feng, P. Han, J. Ye, and Y. Zhang, “Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations,” Opt. Express 24, 7178–7190 (2016).
    [Crossref]
  8. K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
    [Crossref]
  9. K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
    [Crossref]
  10. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
    [Crossref]
  11. J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
    [Crossref]
  12. Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3, 3347 (2013).
    [Crossref]
  13. H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
    [Crossref]
  14. A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
    [Crossref]
  15. C. Liu, J. Liu, L. Niu, X. Wei, K. Wang, and Z. Yang, “Terahertz circular Airy vortex beams,” Sci. Rep. 7, 3891 (2017).
    [Crossref]
  16. Z. Wu, X. Wang, W. Sun, S. Feng, P. Han, J. Ye, Y. Yu, and Y. Zhang, “Vectorial diffraction properties of THz vortex Bessel beams,” Opt. Express 26, 1506–1520 (2018).
    [Crossref]
  17. S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25, 12349–12356 (2017).
    [Crossref]
  18. A. Minasyan, C. Trovato, J. Degert, E. Freysz, E. Brasselet, and E. Abraham, “Geometric phase shaping of terahertz vortex beams,” Opt. Lett. 42, 41–44 (2017).
    [Crossref]
  19. B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
    [Crossref]
  20. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20, 21896–21904 (2012).
    [Crossref]
  21. R. Imai, N. Kanda, T. Higuchi, K. Konishi, and M. Kuwata-Gonokami, “Generation of broadband terahertz vortex beams,” Opt. Lett. 39, 3714–3717 (2014).
    [Crossref]
  22. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823–831 (2001).
    [Crossref]
  23. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic nio,” Phys. Rev. Lett. 106, 047401 (2011).
    [Crossref]
  24. E. Abraham, H. Cahyadi, M. Brossard, J. Degert, E. Freysz, and T. Yasui, “Development of a wavefront sensor for terahertz pulses,” Opt. Express 24, 5203–5211 (2016).
    [Crossref]
  25. M. Brossard, J.-F. Sauvage, M. Perrin, and E. Abraham, “Terahertz adaptive optics with a deformable mirror,” Opt. Lett. 43, 1594–1597 (2018).
    [Crossref]
  26. P. C. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [Crossref]
  27. Z. Jiang, X. G. Xu, and X.-C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39, 2982–2987 (2000).
    [Crossref]
  28. M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
    [Crossref]

2018 (2)

2017 (5)

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25, 12349–12356 (2017).
[Crossref]

A. Minasyan, C. Trovato, J. Degert, E. Freysz, E. Brasselet, and E. Abraham, “Geometric phase shaping of terahertz vortex beams,” Opt. Lett. 42, 41–44 (2017).
[Crossref]

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
[Crossref]

C. Liu, J. Liu, L. Niu, X. Wei, K. Wang, and Z. Yang, “Terahertz circular Airy vortex beams,” Sci. Rep. 7, 3891 (2017).
[Crossref]

2016 (3)

2015 (2)

X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015).
[Crossref]

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

2014 (4)

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

R. A. Lewis, “A review of terahertz sources,” J. Phys. D 47, 374001 (2014).
[Crossref]

R. Imai, N. Kanda, T. Higuchi, K. Konishi, and M. Kuwata-Gonokami, “Generation of broadband terahertz vortex beams,” Opt. Lett. 39, 3714–3717 (2014).
[Crossref]

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

2013 (2)

J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
[Crossref]

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3, 3347 (2013).
[Crossref]

2012 (1)

2011 (2)

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic nio,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref]

2007 (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

2002 (1)

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

2001 (2)

2000 (1)

1996 (1)

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Abraham, E.

Akalin, T.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3, 3347 (2013).
[Crossref]

Akiba, T.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Ala-Laurinaho, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Allen, L.

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Bakker, H. J.

Brasselet, E.

Brossard, M.

M. Brossard, J.-F. Sauvage, M. Perrin, and E. Abraham, “Terahertz adaptive optics with a deformable mirror,” Opt. Lett. 43, 1594–1597 (2018).
[Crossref]

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

E. Abraham, H. Cahyadi, M. Brossard, J. Degert, E. Freysz, and T. Yasui, “Development of a wavefront sensor for terahertz pulses,” Opt. Express 24, 5203–5211 (2016).
[Crossref]

Cahyadi, H.

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

E. Abraham, H. Cahyadi, M. Brossard, J. Degert, E. Freysz, and T. Yasui, “Development of a wavefront sensor for terahertz pulses,” Opt. Express 24, 5203–5211 (2016).
[Crossref]

Castro-Camus, E.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Chen, P.

Chen, Q.

Choporova, Y.

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

Cooke, D.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Degert, J.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Dong, J.

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Feng, S.

Freysz, E.

Ge, S.

Häkli, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Han, P.

He, J.

Hernandez-Serrano, A. I.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
[Crossref]

Higuchi, T.

Hu, D.

Hu, W.

Imai, R.

Jepsen, P.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Jiang, Z.

Kan, Q.

Kanda, N.

Kang, B. J.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Kim, W. T.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Knyazev, B.

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

Koch, M.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Konishi, K.

Koskinen, T.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Kuwata-Gonokami, M.

Lewis, R. A.

R. A. Lewis, “A review of terahertz sources,” J. Phys. D 47, 374001 (2014).
[Crossref]

Liu, C.

Liu, J.

Lönnqvist, A.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Lopez-Mago, D.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
[Crossref]

Lu, Y.

Mallat, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Meltaus, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Minasyan, A.

Mitkov, M.

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Miyamoto, K.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Nienhuys, H.-K.

Niinomi, H.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Niu, L.

Noponen, E.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Omatsu, T.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Padgett, M.

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Pavelyev, V.

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

Perrin, M.

M. Brossard, J.-F. Sauvage, M. Perrin, and E. Abraham, “Terahertz adaptive optics with a deformable mirror,” Opt. Lett. 43, 1594–1597 (2018).
[Crossref]

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

Planken, P. C.

Räisänen, A. V.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Robertson, D.

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Rotermund, F.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Säily, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Salo, J.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Salomaa, M. M.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Sasaki, Y.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Sauvage, J.-F.

Shen, Z.

Shi, J.

Smith, G.

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Suizu, K.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Sun, W.

Tamaru, H.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic nio,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref]

Tani, M.

Trovato, C.

Turnbull, G.

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Viikari, V.

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

Volodkin, B.

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

Wang, K.

Wang, X.

Wei, X.

Wenckebach, T.

Wu, Z.

Xie, Z.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3, 3347 (2013).
[Crossref]

Xu, X. G.

Yan, S.

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Yang, Z.

Yasui, T.

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

E. Abraham, H. Cahyadi, M. Brossard, J. Degert, E. Freysz, and T. Yasui, “Development of a wavefront sensor for terahertz pulses,” Opt. Express 24, 5203–5211 (2016).
[Crossref]

Ye, J.

Yu, Y.

Zhang, X.

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Zhang, X.-C.

Zhang, Y.

Zhang, Z.

Zheng, Z.

Zhou, H.

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Zhou, Y.

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

IEEE Photon. J. (1)

H. Zhou, J. Dong, S. Yan, Y. Zhou, and X. Zhang, “Generation of terahertz vortices using metasurface with circular slits,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Brossard, H. Cahyadi, M. Perrin, J. Degert, E. Freysz, T. Yasui, and E. Abraham, “Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging,” IEEE Trans. Terahertz Sci. Technol. 7, 741–746 (2017).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared Millim. Terahertz Waves 38, 938–944 (2017).
[Crossref]

J. Opt. A (1)

J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lönnqvist, T. Koskinen, V. Viikari, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, “Holograms for shaping radio-wave fields,” J. Opt. A 4, S161–S167 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

R. A. Lewis, “A review of terahertz sources,” J. Phys. D 47, 374001 (2014).
[Crossref]

Laser Photon. Rev. (1)

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Opt. Commun. (1)

G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

B. Knyazev, Y. Choporova, M. Mitkov, V. Pavelyev, and B. Volodkin, “Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum,” Phys. Rev. Lett. 115, 163901 (2015).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic nio,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Sci. Rep. (3)

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3, 3347 (2013).
[Crossref]

C. Liu, J. Liu, L. Niu, X. Wei, K. Wang, and Z. Yang, “Terahertz circular Airy vortex beams,” Sci. Rep. 7, 3891 (2017).
[Crossref]

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6, 38880 (2016).
[Crossref]

Other (1)

“Terahertz optics taking off,” Special issue of Nature Photonics7, 665 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Geometry of THz generation in the 110 ZnTe crystal. ( X ^ , Y ^ , Z ^ ) , Cartesian frame of the crystal; ( x ^ , y ^ , z ^ ) , Cartesian frame of the laboratory; φ , azimuthal angle; θ , angle between the horizontal y axis of the laboratory and the Z axis of the crystal frame; k , wave vector of the IR pump beam.
Fig. 2.
Fig. 2. Numerical simulation of the THz intensity distribution in the Fourier plane. (a) Superposition of a Gaussian beam (topological charge 0) and a vortex beam with topological charge ± 2 [Eq. (6)]. The dashed circle indicates the size of the mask (see Section 3). (b) Intensity distribution of the Gaussian field contribution. (c) Intensity distribution of the vortex field contribution. The physical parameters of the simulation are indicated in the text.
Fig. 3.
Fig. 3. Numerical simulation of (a) THz intensity and (b) phase distribution after spatial filtering with a circular mask with radius R . For a better representation, THz intensity is multiplied by the factors 1.33 for R = 1    mm , 2.8 for R = 2    mm , and 4 for R = 3.5    mm , respectively. The physical parameters of the simulation are indicated in the text.
Fig. 4.
Fig. 4. Power efficiency P out / P in (blue curve) and vortex purity p ( R ) (red curve) as a function of the mask radius R .
Fig. 5.
Fig. 5. Experimental setup. C, chopper; VVW, vector vortex waveplate; λ / 4 , quarter-wave plate at 1 THz; P, THz polarizer; L, plano-convex THz lens with f = 50    mm focal length; FP, Fourier plane; F, 1 THz bandpass filter; M, mask.
Fig. 6.
Fig. 6. Reference THz electric field distribution obtained without VVW, THz quarter-wave plate, polarizer, and mask. (a) Amplitude at 1 THz; (b) phase at 1 THz; (c) temporal waveform at the position indicated by the black cross in (a) and (b); (d) corresponding spectrum.
Fig. 7.
Fig. 7. THz vortex beam with topological charge + 2 . (a) Temporal evolution of the THz electric field distribution. T = 1    ps ; (b) amplitude of the 1 THz electric field distribution after Fourier transform of the temporal data; (c) phase of the 1 THz electric field distribution after Fourier transform of the temporal data; (d) evolution of the phase as a function of the azimuthal angle φ . The experimental points correspond to the phase values along the white circle in (d).
Fig. 8.
Fig. 8. THz vortex beam with topological charge 2 . (a) Temporal evolution of the THz electric field distribution. T = 1    ps ; (b) amplitude of the 1 THz electric field distribution after Fourier transform of the temporal data; (c) phase of the 1 THz electric field distribution after Fourier transform of the temporal data; (d) evolution of the phase as a function of the azimuthal angle φ . The experimental points correspond to the phase values along the white circle in (d).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( E X E Y E Z ) = R · ( 0 E y E z ) ,
R = ( 1 2 sin θ 2 cos θ 2 1 2 sin θ 2 cos θ 2 0 cos θ sin θ ) ,
( P X ( 2 ) P Y ( 2 ) P Z ( 2 ) ) = ϵ 0 χ ( 2 ) : E E * = ϵ 0 χ X Y Z ( 2 ) ( E Y E Z * E Z E X * E X E Y * ) ,
E = E 0 ( r ) [ cos ( φ ) y ^ + sin ( φ ) z ^ ] ,
( E x THz E y THz E z THz ) = E 0 ( r ) ( 0 3 cos ( 3 θ 2 φ ) cos ( θ 2 φ ) 2 cos θ 3 sin ( 3 θ 2 φ ) + sin ( θ 2 φ ) 2 sin θ ) ,
( E x THz E y THz E z THz ) = 1 2 E 0 ( r ) ( 0 sin 2 ( φ ) sin ( 2 φ ) ) = 1 4 E 0 ( r ) ( 0 1 e 2 i φ + e 2 i φ 2 e 2 i φ e 2 i φ i ) ,
E α THz = E y THz cos α + i E z THz sin α .
E α THz = 1 4 E 0 ( r ) [ cos α + ( sin α cos α 2 ) e 2 i φ ( sin α + cos α 2 ) e 2 i φ ] .
E ± α * THz = 1 2 5 E 0 ( r ) ( 1 e 2 i φ ) .
P in = 0 | E ± α * THz | 2 2 π r d r ,
P out ( R ) = 0 | F 1 [ F ( E ± α * THz ) · T R ] | 2 2 π r d r ,
p ( R ) = 0 | F 1 [ F ( E 0 ( r ) e 2 i l φ ) · T R ] | 2 2 π r d r P out ( R ) .

Metrics