Abstract

We discuss the electromagnetically induced transparency (EIT) phenomenon for a model in which a structured continuum is described by a so-called double Fano structure; instead of one autoionizing (AI) state, two such states are embedded in a flat continuum. Such a Fano structure is the upper level of a Λ-like three-level system and is coupled to two lower ones by an external laser field involving δ-correlated, Gaussian, Markov process (white noise), simulating realistic conditions of the experiment. For such a system we derived and solved a set of coupled stochastic integrodifferential equations in the stationary regime, obtaining exact formulas determining the electric susceptibility of the system. Dispersion and absorption spectra of the medium susceptibility were calculated and compared with those already discussed in the literature. We have shown that the presence of an additional AI level considerably changes the structure of transparency windows and how noisy excitation influences the EIT processes.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system

H. R. Hamedi, Ali Hamrah Gharamaleki, and Mostafa Sahrai
Appl. Opt. 55(22) 5892-5899 (2016)

Electromagnetically induced acoustic wave transparency in a diamond mechanical resonator

Qizhe Hou, Wanli Yang, Changyong Chen, and Zhangqi Yin
J. Opt. Soc. Am. B 33(11) 2242-2250 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription