Abstract

A subwavelength-scale Huygens particle utilizing both electric and magnetic responses is proposed here. As the electric and magnetic responses of the proposed particle are independent of each other, arbitrary complex transmission coefficients covering all magnitudes from 0 to 0.9 and all phases (360°) can be achieved by varying its structural parameters. By properly engineering the distribution of transmission magnitudes and phases, a Huygens metasurface grating with excitation of +1 order harmonic is designed and fabricated. The measurement results are in agreement with the simulations, further demonstrating the validity of the designed Huygens particle and metasurface.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Huygens’ metasurfaces via the equivalence principle: design and applications

Ariel Epstein and George V. Eleftheriades
J. Opt. Soc. Am. B 33(2) A31-A50 (2016)

Bi-layer metasurface based on Huygens’ principle for high gain antenna applications

Muhammad Rizwan Akram, Chong He, and Weiren Zhu
Opt. Express 28(11) 15844-15854 (2020)

3D plasmonic design approach for efficient transmissive Huygens metasurfaces

Bryan Adomanis, D. Bruce Burckel, and Michael Marciniak
Opt. Express 27(15) 20928-20937 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription