Abstract

The generation of single-cycle attosecond pulses based on Thomson scattering of terahertz (THz) pulses is proposed. In the scheme, a high-quality relativistic electron beam, produced by a laser-plasma wakefield accelerator, is sent through suitable magnetic devices to produce ultrathin electron layers for coherent Thomson backscattering of intense THz pulses. According to numerical simulations, single-cycle attosecond pulse generation is possible with up to 1 nJ energy. The waveform of the attosecond pulses closely resembles that of the THz pulses. This allows for flexible waveform control of attosecond pulses.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme

Sandeep Kumar, Heung-Sik Kang, and Dong Eon Kim
Opt. Express 19(8) 7537-7545 (2011)

Intense attosecond pulses from laser-irradiated near-critical-density plasmas

Yuxue Zhang, Bin Qiao, Xinrong Xu, Hengxin Chang, Haiyang Lu, Cangtao Zhou, Hua Zhang, Shaoping Zhu, Matthew Zepf, and Xiantu He
Opt. Express 25(23) 29058-29067 (2017)

Few-cycle attosecond pulses with stabilized-carrier-envelope phase in the presence of a strong terahertz field

Weiyi Hong, Peixiang Lu, Pengfei Lan, Qingbin Zhang, and Xinbing Wang
Opt. Express 17(7) 5139-5146 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription