Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigation of graphene-supported tunable asymmetric terahertz metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

By integrating a graphene layer with asymmetric split-ring metamaterial (MM) metal resonators, we investigated tunable propagation properties in the terahertz regime, including the effects of graphene Fermi levels, structural parameters, and operation frequencies. The results reveal that a sharp inductor-capacitor (LC) resonance can be observed at low frequency for the asymmetric MM structure, and its Q factor can reach more than 17.5. With the help of a graphene layer, the optical response is modulated efficiently. For instance, if the Fermi level changes in the range of 0.01–0.3 eV, for the semiconductor MM structure, the modulation depths (MDs) of amplitude and frequency are 27.0% and 43.4%, respectively. In addition, the resonant curves of indium antimonide (InSb) MMs can be modulated by changing the temperature; the amplitude MD is 56.2% as the temperature changes in the range of 350–800 K. The Q factor of the InSb MM structure is about 44.6. The results are helpful for designing novel graphene-based tunable terahertz devices, e.g., filters and modulators.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Investigation of graphene-supported submillimeter adjustable metamaterial absorbers

Shizeng Jiang, Duo Cao, Shilin Liu, Yan Cheng, Jiaxin Li, He Lianhao, Fantting Lin, Feng Liu, and Xiaoyong He
J. Opt. Soc. Am. B 41(4) 827-835 (2024)

Graphene-supported tunable bidirectional terahertz metamaterials absorbers

Jun Peng, Jin Leng, Duo Cao, Xiaoyong He, Fangting Lin, and Feng Liu
Appl. Opt. 60(22) 6520-6525 (2021)

Graphene patterns supported terahertz tunable plasmon induced transparency

Xiaoyong He, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Express 26(8) 9931-9944 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.