Abstract

We present GaAs/AlGaAs semiconductor lasers in which second-order nonlinearities are phase matched for efficient second-order nonlinear conversion. A comprehensive study of difference frequency generation (DFG) is presented, and the process is characterized for tuning, efficiency, and tolerances. External nonlinear conversion efficiency of 1.84×102%/W/cm2 is measured for the DFG process. The effects of carrier injection and temperature variation on DFG wavelength are studied, and the two effects are deconvolved for better understanding of carrier effects on nonlinear conversion. A wide DFG tuning range for the device operation is experimentally demonstrated where the idler wavelength can be tuned more than 30 nm for every 1-nm span of the pump wavelength.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable quantum dot parametric source

A. Andronico, I. Favero, S. Ducci, J. M. Gérard, and G. Leo
Opt. Express 21(19) 22367-22373 (2013)

Analysis of all-semiconductor intracavity optical parametric oscillators

Jacob B. Khurgin, Emmanuel Rosencher, and Yujie J. Ding
J. Opt. Soc. Am. B 15(6) 1726-1730 (1998)

Design methodology for efficient frequency conversion in Bragg reflection lasers

Bhavin J. Bijlani and Amr S. Helmy
J. Opt. Soc. Am. B 29(9) 2484-2492 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [Crossref]
  2. J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
    [Crossref]
  3. B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
    [Crossref]
  4. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
    [Crossref]
  5. P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
    [Crossref]
  6. R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
  7. D. Kang, A. Anirban, and A. S. Helmy, “Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons,” Opt. Express 24, 15160–15170 (2016).
    [Crossref]
  8. D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
    [Crossref]
  9. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [Crossref]
  10. B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
    [Crossref]
  11. F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
    [Crossref]
  12. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
    [Crossref]
  13. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO: 2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper PDPA3.
  14. H. C. Casey and M. B. Panish, Heterostructure Lasers Pt.A. Fundamental Principles (Academic, 1978).
  15. B. Pressl, T. Günthner, K. Laiho, J. Geßler, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Mode-resolved Fabry–Perot experiment in low-loss Bragg-reflection waveguides,” Opt. Express 23, 33608–33621 (2015).
    [Crossref]
  16. C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).
  17. T. Paoli, “A new technique for measuring the thermal impedance of junction lasers,” IEEE J. Quantum Electron. 11, 498–503 (1975).
    [Crossref]
  18. J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
    [Crossref]

2016 (2)

D. Kang, A. Anirban, and A. S. Helmy, “Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons,” Opt. Express 24, 15160–15170 (2016).
[Crossref]

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

2015 (2)

2014 (2)

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

2013 (2)

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

2012 (1)

2010 (1)

2009 (3)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[Crossref]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[Crossref]

2008 (1)

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[Crossref]

1980 (1)

J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
[Crossref]

1975 (1)

T. Paoli, “A new technique for measuring the thermal impedance of junction lasers,” IEEE J. Quantum Electron. 11, 498–503 (1975).
[Crossref]

Abolghasem, P.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
[Crossref]

J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[Crossref]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[Crossref]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO: 2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper PDPA3.

Aitchison, S.

Amanti, M.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

Anirban, A.

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

Autebert, C.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Bijlani, B.

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[Crossref]

Bijlani, B. J.

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
[Crossref]

B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
[Crossref]

J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[Crossref]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[Crossref]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO: 2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper PDPA3.

Boitier, F.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Casey, H. C.

H. C. Casey and M. B. Panish, Heterostructure Lasers Pt.A. Fundamental Principles (Academic, 1978).

Della Frera, A.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Ducci, S.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Favero, I.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Galopin, E.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Geßler, J.

Günthner, T.

Halioua, Y.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

Han, J.

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

Han, J.-B.

He, H.

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Helmy, A. S.

D. Kang, A. Anirban, and A. S. Helmy, “Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons,” Opt. Express 24, 15160–15170 (2016).
[Crossref]

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
[Crossref]

J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[Crossref]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[Crossref]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[Crossref]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO: 2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper PDPA3.

Helt, L. G.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Höfling, S.

Holmes, B. M.

Horn, R. T.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Hutchings, D. C.

Jennewin, T.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Kamp, M.

Kang, D.

D. Kang, A. Anirban, and A. S. Helmy, “Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons,” Opt. Express 24, 15160–15170 (2016).
[Crossref]

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[Crossref]

Kim, M.

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Kolenderski, P.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Laiho, K.

Lemaître, A.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Leo, G.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Maltese, G.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

Manquest, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Mendoza-Alvarez, J.

J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
[Crossref]

Nunes, F.

J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
[Crossref]

Orieux, A.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Panish, M. B.

H. C. Casey and M. B. Panish, Heterostructure Lasers Pt.A. Fundamental Principles (Academic, 1978).

Paoli, T.

T. Paoli, “A new technique for measuring the thermal impedance of junction lasers,” IEEE J. Quantum Electron. 11, 498–503 (1975).
[Crossref]

Patel, N.

J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
[Crossref]

Pressl, B.

Qian, L.

Sarrafi, P.

Scarcella, C.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Schneider, C.

Sipe, J. E.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Sirtori, C.

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Tosi, A.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Weihs, G.

B. Pressl, T. Günthner, K. Laiho, J. Geßler, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Mode-resolved Fabry–Perot experiment in low-loss Bragg-reflection waveguides,” Opt. Express 23, 33608–33621 (2015).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Zhu, E. Y.

Zhukovsky, S. V.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Appl. Phys. Lett. (2)

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[Crossref]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Semiconductor optical parametric generators in isotropic semiconductor diode lasers,” Appl. Phys. Lett. 103, 091103 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Paoli, “A new technique for measuring the thermal impedance of junction lasers,” IEEE J. Quantum Electron. 11, 498–503 (1975).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

J. Appl. Phys. (1)

J. Mendoza-Alvarez, F. Nunes, and N. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365–4367 (1980).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Phys. Rev. Lett. (1)

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Sci. Rep. (1)

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewin, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).

Technologies (1)

C. Autebert, G. Maltese, Y. Halioua, F. Boitier, A. Lemaître, M. Amanti, C. Sirtori, and S. Ducci, “Electrically injected twin photon emitting lasers at room temperature,” Technologies 4, 24 (2016).

Other (2)

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO: 2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper PDPA3.

H. C. Casey and M. B. Panish, Heterostructure Lasers Pt.A. Fundamental Principles (Academic, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Refractive index profile at pump, signal, and idler wavelengths, i.e., 816, 1550, and 1723 nm (top), and schematic and mode profile of the structure (bottom). The dashed black lines in the index profile represent the effective index.
Fig. 2.
Fig. 2. SEM micrograph of a sample laser diode.
Fig. 3.
Fig. 3. (a) LIV curves for two diode lasers operated at 20°C. The solid and dashed lines represent a 0.76-mm-long and 1.04-mm-long device, respectively. (b) Normalized optical spectrum of the laser under test at 100 mA at various stage temperatures.
Fig. 4.
Fig. 4. Near field of the laser under test at 20°C and 100 mA current. (a) Calculated and (b) measured 1D NF profile. (c) Calculated and (d) measured 2D NF profile.
Fig. 5.
Fig. 5. Schematic of DFG experimental setup. Two tunable sources emitting around 816 nm and 1550 nm wavelength are injected into the sample after beam shaping and polarization control. SMF, single mode fiber; BPF, tunable band-pass filter; FPC, fiber polarization controller; FC, fiber collimator; PBS, polarization beam splitter; BS, beam splitter; S, beam sampler; M, mirror; MF, flip-mount mirror; BRL, Bragg reflection waveguide laser; Ge-PD, germanium photodetector.
Fig. 6.
Fig. 6. (a) Measured DFG tuning curve of the device under test. The circles highlight the signal wavelength and triangles represent the idler. (b) Idler power plotted against pump wavelength for a constant signal wavelength of 1550 nm. The circles are the measured data and the solid line shows a Lorentzian fit. Inset shows the idler power plotted as a function of signal power for a constant pump power of 90 mW. The dashed line is a linear fit.
Fig. 7.
Fig. 7. DFG phase-matching wavelength for constant signal wavelength of 1550 nm, plotted as a function of (a) stage temperature and (b) injected current. In the latter figure, stage temperature was kept constant at 20°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λPM,corrected=λPMΔλ/ΔT×ΔT/ΔI×I.

Metrics