Abstract

Photon-pair creation through parametric downconversion underpins quantum technology for quantum sensing and imaging. Here we numerically study the creation of single photons in the near- and mid-infrared (mid-IR) regime from 1 to 13 μm in a range of novel nonlinear semiconductor and chalcopyrite materials. We identify phase-matching conditions and single out regimes in which group-velocity matching can be achieved with commercially available pump lasers. Finally, we discuss how mid-IR single photons can be detected. Using our numerical results, we identify materials and pump lasers for upconversion detection in conventional wavelength bands. Our study provides a complete recipe for mid-IR single-photon generation and detection, opening up quantum enhancements for mid-IR applications such as biomedical imaging, communication, and remote sensing.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Independent high-purity photons created in domain-engineered crystals

Francesco Graffitti, Peter Barrow, Massimiliano Proietti, Dmytro Kundys, and Alessandro Fedrizzi
Optica 5(5) 514-517 (2018)

Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings

Vahid Ansari, John M. Donohue, Benjamin Brecht, and Christine Silberhorn
Optica 5(5) 534-550 (2018)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
    [Crossref]
  2. P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
    [Crossref]
  3. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).
  4. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
    [Crossref]
  5. H. Amrania, G. Antonacci, C.-H. Chan, L. Drummond, W. R. Otto, N. A. Wright, and C. Phillips, “Digistain: a digital staining instrument for histopathology,” Opt. Express 20, 7290–7299 (2012).
    [Crossref]
  6. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
    [Crossref]
  7. G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).
  8. F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
    [Crossref]
  9. S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
    [Crossref]
  10. Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit,” Opt. Express 24, 5045–5056 (2016).
    [Crossref]
  11. Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
    [Crossref]
  12. M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
    [Crossref]
  13. M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
    [Crossref]
  14. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
    [Crossref]
  15. C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
    [Crossref]
  16. F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, “Quantum-memory-assisted multi-photon generation for efficient quantum information processing,” Optica 4, 1034–1037 (2017).
    [Crossref]
  17. F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
    [Crossref]
  18. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
    [Crossref]
  19. R. J. A. Francis-Jones, R. A. Hoggarth, and P. J. Mosley, “All-fiber multiplexed source of high-purity single photons,” Optica 3, 1270–1273 (2016).
    [Crossref]
  20. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).
  21. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  22. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref]
  23. F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
    [Crossref]
  24. N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
    [Crossref]
  25. F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24, 10733–10747 (2016).
    [Crossref]
  26. F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
    [Crossref]
  27. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
    [Crossref]
  28. P. B. Dixon, J. H. Shapito, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
    [Crossref]
  29. J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
    [Crossref]
  30. A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
    [Crossref]
  31. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).
  32. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).
  33. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).
  34. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  35. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
    [Crossref]
  36. H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
    [Crossref]
  37. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [Crossref]
  38. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002).
    [Crossref]
  39. K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333  MHz frequency comb continuously tunable from 1.95 to 4.0  μm,” Opt. Lett. 40, 4178–4181 (2015).
    [Crossref]
  40. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B 20, 1309–1316 (2003).
    [Crossref]
  41. Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phasematching in lithium niobate,” Opt. Lett. 33, 378–380 (2008).
    [Crossref]
  42. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, New Mexico (2018).
  43. G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
    [Crossref]
  44. P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-Grown ZnGeP2 and CdGeAs2 and their optical properties,” MRS Bull. 23(7), 23–27 (1998).
    [Crossref]
  45. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9  μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001).
    [Crossref]
  46. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99  W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21, 10062–10069 (2013).
    [Crossref]
  47. L. Wang, T. Xing, S. Hu, X. Wu, H. Wu, J. Wang, and H. Jiang, “Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%,” Opt. Express 25, 3373–3380 (2017).
    [Crossref]
  48. I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.
  49. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18, 818–822 (2001).
    [Crossref]
  50. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
    [Crossref]
  51. V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunemann, and K. T. Zawilski, “Nonlinear, dispersive and phase-matching properties of the new chalcopyrite CdSiP2,” Opt. Mater. Express 1, 1292–1300 (2011).
    [Crossref]
  52. J. Wei, J. M. Murray, F. K. Hopkins, D. M. Krein, K. T. Zawilski, P. G. Schunemann, and S. Guha, “Measurement of refractive indices of CdSiP2 at temperatures from 90 to 450  K,” Opt. Mater. Express 8, 235–244 (2018).
    [Crossref]
  53. A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4  μm,” Opt. Lett. 34, 3053–3055 (2009).
    [Crossref]
  54. S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
    [Crossref]
  55. S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
    [Crossref]
  56. S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
    [Crossref]
  57. Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
    [Crossref]
  58. V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
    [Crossref]
  59. C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
    [Crossref]
  60. L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.
  61. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
    [Crossref]
  62. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
    [Crossref]
  63. C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
    [Crossref]
  64. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
    [Crossref]
  65. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6  μm,” Opt. Lett. 40, 2906–2908 (2015).
    [Crossref]
  66. K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
    [Crossref]
  67. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref]
  68. O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
    [Crossref]
  69. J. Wei, J. M. Murray, J. O. Barnes, D. M. Krein, P. G. Schunemann, and S. Guha, “Temperature dependent Sellmeier equation for the refractive index of GaP,” Opt. Mater. Express 8, 485–490 (2018).
    [Crossref]
  70. V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.
  71. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
    [Crossref]
  72. O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25, 32713–32721 (2017).
    [Crossref]
  73. E. Sorokin, A. Marandi, P. G. Schunemann, M. M. Fejer, R. L. Byer, and I. T. Sorokina, “Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4  μm using OP-GaP,” Opt. Express 26, 9963–9971 (2018).
    [Crossref]
  74. Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
    [Crossref]
  75. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
    [Crossref]
  76. H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
    [Crossref]
  77. K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide,” Opt. Express 25, 17411–17416 (2017).
    [Crossref]
  78. J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
    [Crossref]
  79. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express 17, 3441–3446 (2009).
    [Crossref]
  80. A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
    [Crossref]
  81. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
    [Crossref]
  82. P. S. Kuo and M. M. Fejer, “Mixing of polarization states in zincblende nonlinear optical crystals,” Opt. Express 26, 26971–26984 (2018).
    [Crossref]
  83. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
    [Crossref]
  84. T. Gerrits (personal communication, 2018).
  85. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  86. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
    [Crossref]
  87. F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.
  88. I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
    [Crossref]
  89. M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
    [Crossref]
  90. C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
    [Crossref]
  91. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  92. A. P. Vandevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
    [Crossref]
  93. A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
    [Crossref]
  94. G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. Ruo Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
    [Crossref]
  95. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
    [Crossref]
  96. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
    [Crossref]
  97. R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
    [Crossref]
  98. P. Schunemann (personal communication, 2018).

2018 (10)

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
[Crossref]

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

J. Wei, J. M. Murray, F. K. Hopkins, D. M. Krein, K. T. Zawilski, P. G. Schunemann, and S. Guha, “Measurement of refractive indices of CdSiP2 at temperatures from 90 to 450  K,” Opt. Mater. Express 8, 235–244 (2018).
[Crossref]

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

J. Wei, J. M. Murray, J. O. Barnes, D. M. Krein, P. G. Schunemann, and S. Guha, “Temperature dependent Sellmeier equation for the refractive index of GaP,” Opt. Mater. Express 8, 485–490 (2018).
[Crossref]

E. Sorokin, A. Marandi, P. G. Schunemann, M. M. Fejer, R. L. Byer, and I. T. Sorokina, “Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4  μm using OP-GaP,” Opt. Express 26, 9963–9971 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

P. S. Kuo and M. M. Fejer, “Mixing of polarization states in zincblende nonlinear optical crystals,” Opt. Express 26, 26971–26984 (2018).
[Crossref]

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref]

2017 (14)

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25, 32713–32721 (2017).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
[Crossref]

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
[Crossref]

K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide,” Opt. Express 25, 17411–17416 (2017).
[Crossref]

L. Wang, T. Xing, S. Hu, X. Wu, H. Wu, J. Wang, and H. Jiang, “Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%,” Opt. Express 25, 3373–3380 (2017).
[Crossref]

F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, “Quantum-memory-assisted multi-photon generation for efficient quantum information processing,” Optica 4, 1034–1037 (2017).
[Crossref]

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

2016 (12)

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit,” Opt. Express 24, 5045–5056 (2016).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

R. J. A. Francis-Jones, R. A. Hoggarth, and P. J. Mosley, “All-fiber multiplexed source of high-purity single photons,” Optica 3, 1270–1273 (2016).
[Crossref]

F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24, 10733–10747 (2016).
[Crossref]

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
[Crossref]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

2015 (4)

2014 (1)

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

2013 (5)

2012 (6)

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

H. Amrania, G. Antonacci, C.-H. Chan, L. Drummond, W. R. Otto, N. A. Wright, and C. Phillips, “Digistain: a digital staining instrument for histopathology,” Opt. Express 20, 7290–7299 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

2011 (8)

R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. Ruo Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
[Crossref]

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
[Crossref]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
[Crossref]

V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunemann, and K. T. Zawilski, “Nonlinear, dispersive and phase-matching properties of the new chalcopyrite CdSiP2,” Opt. Mater. Express 1, 1292–1300 (2011).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

2010 (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
[Crossref]

2009 (2)

2008 (7)

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phasematching in lithium niobate,” Opt. Lett. 33, 378–380 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[Crossref]

2007 (2)

A. P. Vandevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[Crossref]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

2006 (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

2005 (1)

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

2004 (1)

2003 (2)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B 20, 1309–1316 (2003).
[Crossref]

2002 (2)

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002).
[Crossref]

2001 (3)

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

1998 (1)

P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-Grown ZnGeP2 and CdGeAs2 and their optical properties,” MRS Bull. 23(7), 23–27 (1998).
[Crossref]

1972 (1)

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

Aellen, T.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Agnesi, A.

Almeida, M. P.

Amrania, H.

Antonacci, G.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Artigas, D.

Baillargeon, J. N.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Baker, I.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Balskus, K.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Barh, A.

Barnes, J. O.

Barnes, K.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Barrow, P.

Becouarn, L.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Bedford, R.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Bellei, F.

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Bennetts, S.

Berggren, K. K.

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Bethea, C.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Bethge, J.

Bhargava, R.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Birchall, P. M.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Birks, T. A.

Bjork, B. J.

Bland-Hawthorn, J.

Bliss, D. F.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

Boes, A.

Boulanger, B.

Boyd, G.

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).

Branczyk, A. M.

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

Brida, G.

Broome, M. A.

Budni, P. A.

Buehler, E.

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

Bui, T. Q.

Buller, G. S.

Byer, R. L.

Canals Casals, J.

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

Capasso, F.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Carmody, N.

Carrig, T. J.

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

Cartwright, A. P.

Caughey, T.

Cecchet, F.

Chae, C. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Chaitanya Kumar, S.

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

Chan, C.-H.

Chang, Y.-C.

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Changala, P. B.

Chapman, J.

Chen, J.-Y.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Chen, X.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Cho, A. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Choi, D.-Y.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Christ, A.

Christensen, S.

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

Chrzanowski, H. M.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

Cincio, L.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Clark, A. S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Collins, M. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Creeden, D. J.

Crespi, A.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Crystal, S.

Dallocchio, P.

Dam, J. S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Dane, A. E.

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Davidson, A.

Degiovanni, I. P.

Devi, K.

Dixon, P. B.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Dosseva, A.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Drummond, L.

Ebert, C. B.

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Ebrahim-Zadeh, M.

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).

Eckstein, A.

Eggleton, B. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Erkmen, B. I.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Esteban-Martin, A.

Eyres, L.

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Faist, J.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Fan, H.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Fedrizzi, A.

Fejer, M.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Fejer, M. M.

P. S. Kuo and M. M. Fejer, “Mixing of polarization states in zincblende nonlinear optical crystals,” Opt. Express 26, 26971–26984 (2018).
[Crossref]

E. Sorokin, A. Marandi, P. G. Schunemann, M. M. Fejer, R. L. Byer, and I. T. Sorokina, “Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4  μm using OP-GaP,” Opt. Express 26, 9963–9971 (2018).
[Crossref]

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Fermann, M.

Fermann, M. E.

Fernandez, D. C.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Fontana, G.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Francis-Jones, R. J. A.

Fu, Y.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Ganikhanov, F.

Gao, A.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Garay-Palmett, K.

Gardiner, T.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Genovese, M.

Gerard, B.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Gerrits, T.

T. Gerrits (personal communication, 2018).

Giessen, H.

Giovannetti, V.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Giovannini, M.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Gisin, N.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Gmachl, C.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Goodhue, W.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Graffitti, F.

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Greganti, C.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Guha, S.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Halimi, A.

Hanning, E. A.

Hao, L.

Harris, J.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Harris, J. S.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Hartl, I.

Haub, J.

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Heckl, O. H.

Hellström, J.

Helt, L. G.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

Hemming, A.

Henriksson, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

Hensley, C. J.

Hentschel, M.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Hewitt, S. M.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Hipwood, L.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Hoggarth, R. A.

Hopkins, F. K.

Hu, S.

Hu, W.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Huang, Y.-P.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Hübel, H.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Hwang, H. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Jennewein, T.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Jiang, H.

Jiang, J.

Jin, R.-B.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Joshi, S. K.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Kaneda, F.

Kar, A. K.

Kara, O.

Kato, K.

Kemlin, V.

Kofler, J.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Kohler, M.

Kornaszewski, L.

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Krauss, T. F.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Krauth, J.

Krein, D. M.

Kundys, D.

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Kuo, P. S.

P. S. Kuo and M. M. Fejer, “Mixing of polarization states in zincblende nonlinear optical crystals,” Opt. Express 26, 26971–26984 (2018).
[Crossref]

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Kwiat, P. G.

Lallier, E.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Lamb, R. A.

Laudenbach, F.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Laurell, F.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B 20, 1309–1316 (2003).
[Crossref]

Lee, K. F.

Leindecker, N.

Leong, P. H. W.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Leon-Saval, S.

Levi, O.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Levin, I. W.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Lima, I. T.

H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
[Crossref]

Lin, A.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Lis, D.

Lita, A. E.

Liu, C.-H.

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Liu, E.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Liu, Z.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Lloyd, S.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Lobino, M.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Long, M.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Loparo, Z. E.

Lu, W.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Lynch, C.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

Ma, X. S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Maccone, L.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Magarrell, D. J.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Mahendra, A.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Maidment, L.

Major, A.

H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
[Crossref]

Mancinelli, M.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Mann, M.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Marandi, A.

Marsili, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Martini, R.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Martynkien, T.

Matthews, J. C. F.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Maxey, C.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

McCarthy, J. C.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

McCaughan, A. N.

McCracken, R. A.

McKinnie, I. T.

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

McMillan, A.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Ménaert, B.

Mergo, P.

Miao, F.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Migdall, A.

Miller, A. J.

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[Crossref]

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Mirin, R. P.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Mirov, S. B.

Mitchell, A.

Mohr, C.

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Moreau, P.-A.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Mosley, P. J.

Murray, J. M.

Najafi, F.

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Nam, S. W.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[Crossref]

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Neal, C. R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

Nilges, T.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Norris, T. B.

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

O’Brien, J. L.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

O’Donnell, C. F.

Osellame, R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Ott, C.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Otto, W. R.

Paiella, R.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Pan, C.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Parsa, S.

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

Pasiskevicius, V.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B 20, 1309–1316 (2003).
[Crossref]

Pavesi, L.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Pawlikowska, A. M.

Pedersen, C.

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Peremans, A.

Petrov, V.

Petterson, R.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Phillips, C.

Piacentini, F.

Piccione, S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

Pinguet, T. J.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Pirandola, S.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Pirzio, F.

Politi, A.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Pollak, T. M.

P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-Grown ZnGeP2 and CdGeAs2 and their optical properties,” MRS Bull. 23(7), 23–27 (1998).
[Crossref]

Polyakov, S. V.

Pomeranz, L. A.

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Porat, G.

Proietti, M.

Pryde, G. J.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

Quesada, N.

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

Ralph, T. C.

Ramaiah-Badarla, V.

Ramponi, R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Rarity, J. G.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Rawle, C. B.

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

Raymer, M. G.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Reali, G.

Reardon, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Reid, D. T.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25, 32713–32721 (2017).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333  MHz frequency comb continuously tunable from 1.95 to 4.0  μm,” Opt. Lett. 40, 4178–4181 (2015).
[Crossref]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
[Crossref]

Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phasematching in lithium niobate,” Opt. Lett. 33, 378–380 (2008).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B 20, 1309–1316 (2003).
[Crossref]

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Richards, J.

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Ru, Q.

Ruo Berchera, I.

Rutkowski, L.

Sabines-Chesterking, J.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Sapaev, U. K.

Schepler, K.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Schunemann, P.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

P. Schunemann (personal communication, 2018).

Schunemann, P. G.

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

E. Sorokin, A. Marandi, P. G. Schunemann, M. M. Fejer, R. L. Byer, and I. T. Sorokina, “Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4  μm using OP-GaP,” Opt. Express 26, 9963–9971 (2018).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

J. Wei, J. M. Murray, F. K. Hopkins, D. M. Krein, K. T. Zawilski, P. G. Schunemann, and S. Guha, “Measurement of refractive indices of CdSiP2 at temperatures from 90 to 450  K,” Opt. Mater. Express 8, 235–244 (2018).
[Crossref]

J. Wei, J. M. Murray, J. O. Barnes, D. M. Krein, P. G. Schunemann, and S. Guha, “Temperature dependent Sellmeier equation for the refractive index of GaP,” Opt. Mater. Express 8, 485–490 (2018).
[Crossref]

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
[Crossref]

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25, 32713–32721 (2017).
[Crossref]

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
[Crossref]

K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide,” Opt. Express 25, 17411–17416 (2017).
[Crossref]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
[Crossref]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6  μm,” Opt. Lett. 40, 2906–2908 (2015).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunemann, and K. T. Zawilski, “Nonlinear, dispersive and phase-matching properties of the new chalcopyrite CdSiP2,” Opt. Mater. Express 1, 1292–1300 (2011).
[Crossref]

A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4  μm,” Opt. Lett. 34, 3053–3055 (2009).
[Crossref]

D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9  μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001).
[Crossref]

P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-Grown ZnGeP2 and CdGeAs2 and their optical properties,” MRS Bull. 23(7), 23–27 (1998).
[Crossref]

Schwarzer, D.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Segonds, P.

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Shahverdi, A.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Shalm, L. K.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

Shapiro, J. H.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Shapito, J. H.

Shaw, M. D.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Silberhorn, C.

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express 17, 3441–3446 (2009).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Simakov, N.

Sivco, D. L.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Slussarenko, S.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

Smith, A. V.

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, New Mexico (2018).

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Smolski, V. O.

Snure, M.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Sobon, G.

Sorokin, E.

Sorokina, I. T.

Sotor, J.

Spaun, B.

Stace, T. M.

Steel, M. J.

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Steinmann, A.

Stern, J. A.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Stevens, M. J.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Storz, F.

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

Sua, Y. M.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Takaoka, E.

Tambasco, J.-L.

Tan, S.-H.

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Tanzilli, S.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Tassev, V.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Temporao, G.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Thomson, R. R.

Tidemand-Lichtenberg, P.

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

Tillman, K. A.

Tourreau, P. J.

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

Trenti, A.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

U’Ren, A. B.

F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24, 10733–10747 (2016).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Vandevender, A. P.

Vangala, S.

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

Vasilyev, S.

Vasu, S.

Verma, V. B.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Vo, T. D.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Vodopyanov, K. L.

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
[Crossref]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6  μm,” Opt. Lett. 40, 2906–2908 (2015).
[Crossref]

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18, 818–822 (2001).
[Crossref]

Von der Weid, J. P.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Wagner, G. J.

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

Walther, P.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Wang, J.

Wang, L.

Wang, P.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Wang, Q.

Wang, X.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Wei, J.

Wernick, J.

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

Weston, M. M.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

White, A. G.

Whittaker, E. A.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Whittaker, R.

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Winkler, G.

Wodtke, A.

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

Wong, F. N. C.

Wright, N. A.

Wu, H.

Wu, X.

Xia, H.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Xing, T.

Xiong, C.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

Xu, F.

Xu, J.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Xu, L.

Yang, C.

Yang, X.

Ye, H.

Ye, J.

Zawilski, K. T.

J. Wei, J. M. Murray, F. K. Hopkins, D. M. Krein, K. T. Zawilski, P. G. Schunemann, and S. Guha, “Measurement of refractive indices of CdSiP2 at temperatures from 90 to 450  K,” Opt. Mater. Express 8, 235–244 (2018).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunemann, and K. T. Zawilski, “Nonlinear, dispersive and phase-matching properties of the new chalcopyrite CdSiP2,” Opt. Mater. Express 1, 1292–1300 (2011).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4  μm,” Opt. Lett. 34, 3053–3055 (2009).
[Crossref]

Zbinden, H.

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zeilinger, A.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zelmon, D. E.

Zens, T.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

Zhang, X.

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, H.

H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
[Crossref]

Zhao, Q.

Zhao, Y.

Zhong, Z.

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Zotter, S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Erratum to: temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 101, 481 (2010).
[Crossref]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88, 37–41 (2007).
[Crossref]

S. Chaitanya Kumar, J. Canals Casals, S. Parsa, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7  μm,” Appl. Phys. B 124, 100 (2018).
[Crossref]

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Electron. Lett. (1)

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. 8, 419–426 (1972).
[Crossref]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

J. Cryst. Growth (1)

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THZ generation,” J. Cryst. Growth 310, 5241–5247 (2008).
[Crossref]

J. Opt. Soc. Am. B (5)

Laser Phys. (1)

H. Zhao, I. T. Lima, and A. Major, “Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses,” Laser Phys. 20, 1404–1409 (2010).
[Crossref]

MRS Bull. (1)

P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-Grown ZnGeP2 and CdGeAs2 and their optical properties,” MRS Bull. 23(7), 23–27 (1998).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500  nm to 5  μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Nat. Biotechnol. (1)

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Nat. Commun. (3)

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D.-Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref]

Nat. Nanotechnol. (1)

C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Nat. Photonics (2)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photonics 11, 700–703 (2017).
[Crossref]

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Opt. Express (22)

R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref]

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. Ruo Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide,” Opt. Express 25, 17411–17416 (2017).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express 17, 3441–3446 (2009).
[Crossref]

P. S. Kuo and M. M. Fejer, “Mixing of polarization states in zincblende nonlinear optical crystals,” Opt. Express 26, 26971–26984 (2018).
[Crossref]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[Crossref]

H. Amrania, G. Antonacci, C.-H. Chan, L. Drummond, W. R. Otto, N. A. Wright, and C. Phillips, “Digistain: a digital staining instrument for histopathology,” Opt. Express 20, 7290–7299 (2012).
[Crossref]

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
[Crossref]

Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit,” Opt. Express 24, 5045–5056 (2016).
[Crossref]

F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24, 10733–10747 (2016).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

P. B. Dixon, J. H. Shapito, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref]

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99  W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21, 10062–10069 (2013).
[Crossref]

L. Wang, T. Xing, S. Hu, X. Wu, H. Wu, J. Wang, and H. Jiang, “Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%,” Opt. Express 25, 3373–3380 (2017).
[Crossref]

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25, 32713–32721 (2017).
[Crossref]

E. Sorokin, A. Marandi, P. G. Schunemann, M. M. Fejer, R. L. Byer, and I. T. Sorokina, “Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4  μm using OP-GaP,” Opt. Express 26, 9963–9971 (2018).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

Opt. Lett. (16)

O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
[Crossref]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6  μm,” Opt. Lett. 40, 2906–2908 (2015).
[Crossref]

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
[Crossref]

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser,” Opt. Lett. 42, 4756–4759 (2017).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phasematching in lithium niobate,” Opt. Lett. 33, 378–380 (2008).
[Crossref]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
[Crossref]

V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 41, 1708–1711 (2016).
[Crossref]

C. F. O’Donnell, S. Chaitanya Kumar, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2,” Opt. Lett. 43, 1507–1510 (2018).
[Crossref]

A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4  μm,” Opt. Lett. 34, 3053–3055 (2009).
[Crossref]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Compact, 1.5  mJ, 450  MHz, CdSiP2 picosecond optical parametric oscillator near 6.3  μm,” Opt. Lett. 36, 3236–3238 (2011).
[Crossref]

K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333  MHz frequency comb continuously tunable from 1.95 to 4.0  μm,” Opt. Lett. 40, 4178–4181 (2015).
[Crossref]

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42, 3694–3697 (2017).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

Opt. Mater. Express (3)

Optica (3)

Phys. Rev. A (4)

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

Phys. Rev. Appl. (1)

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Hübel, “Numerical investigation of photon-pair generation in periodically poled MTiOX4 (M = K, Rb, Cs; X = P, As),” Phys. Rev. Appl. 8, 024035 (2017).
[Crossref]

Phys. Rev. Lett. (2)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Proc. SPIE (2)

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Quantum Inf. Comput. (1)

G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, and J. P. Von der Weid, “Feasibility study of free-space quantum key distribution in the mid-infrared,” Quantum Inf. Comput. 8, 1–11 (2008).

Quantum Sci. Technol. (1)

F. Graffitti, D. Kundys, D. T. Reid, A. M. Branczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Sci. Adv. (1)

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Sci. Rep. (2)

P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep. 7, 6256 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2  um wavelength spacing,” Sci. Rep. 7, 17494 (2017).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Other (12)

T. Gerrits (personal communication, 2018).

F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in Conference on Lasers and Electro-Optics (CLEO) (2013), paper CTu1H.1.

P. Schunemann (personal communication, 2018).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure single photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv:quant-ph/0611019v1 (2006).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

V. Tassev, M. Snure, R. Petterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, J. Harris, M. Fejer, and P. Schunemann, “Recent progress in development orientation-patterned GaP for next-generation frequency conversion devices,” in Conference of Lasers and Electro-Optics (CLEO) (2013), paper JM4K.5.

L. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Quasi-phase matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films,” in Advanced Solid State Lasers (2000), paper TuA2.

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, New Mexico (2018).

I. T. McKinnie, G. J. Wagner, S. Christensen, T. J. Carrig, and C. B. Rawle, “Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics (CLEO) (2002), paper CTuH1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Optical transparencies of several mid-IR nonlinear crystals, with PPKTP and PPLN included for comparison. Areas shaded in black are transparent but display strong two-photon absorption.
Fig. 2.
Fig. 2. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for type-0 (ee+e) downconversion in PPKTP. The dashed line indicates degeneracy, i.e., spectrally symmetric downconversion. The black line indicates wavelength configurations for high indistinguishability (θ=45°), while the plotted boundaries indicate areas of high spectral purity (θ=0,90°).
Fig. 3.
Fig. 3. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for type-0 (ee+e) downconversion in PPLN.
Fig. 4.
Fig. 4. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for type-0 (ee+e) downconversion in OP-GaP.
Fig. 5.
Fig. 5. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for type-0 (ee+e) downconversion in OP-GaAs.
Fig. 6.
Fig. 6. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for type-I (eo+o) downconversion in PPLN.
Fig. 7.
Fig. 7. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for (a) type-II (oe+o) and (b) type-II (oo+e) downconversion in PPKTP. Solid red areas in the right plot indicate grating periods longer than 250 μm, where birefringent QPM is possible.
Fig. 8.
Fig. 8. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for (a) type-II (oe+o) and (b) type-II (oo+e) downconversion in PPLN.
Fig. 9.
Fig. 9. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for (a) type-II (eo+e) and (b) type-II (ee+o) downconversion in CSP. Solid red areas in the right plot indicate grating periods longer than 500 μm, where birefringent QPM is possible.
Fig. 10.
Fig. 10. Signal wavelength versus pump wavelength with corresponding (left) GVM angle θ and (right) grating period Λ for (a) type-II (oe+o) and (b) type-II (oo+e) downconversion in ZGP. Solid red areas in the right plot indicate grating periods longer than 500 μm, where birefringent QPM is possible.
Fig. 11.
Fig. 11. Upconversion of mid-IR single photons to Si and InGaAs detector bands can be achieved through type-0 DFG in PPLN or OP-GaP.

Tables (1)

Tables Icon

Table 1. Effective Nonlinearity Coefficients in All Polarization Configurations for the Six Crystals Discussed in This Papera

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δk=2π(n(λp)λpn(λs)λsn(λi)λi1Λ),