Abstract

A model of partial differential rate equations for the analysis of signal gain in typical europium-chelate-doped polymer optical fibers is presented and solved by a method of finite differences. The qualitative reliability of some of the results is confirmed by means of a simplified analytical expression. Typical types of chelates at various concentrations are studied in order to be able to optimize the fiber length and pumping conditions for attainment of maximum signal gain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber

Hao Liang, Qijin Zhang, Zhiqiang Zheng, Hai Ming, Zengchang Li, Jie Xu, Biao Chen, and Hui Zhao
Opt. Lett. 29(5) 477-479 (2004)

Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals

Lili Wang, Xiaojie Xue, Feng Shi, Dan Zhao, Daisheng Zhang, Kezhi Zheng, Guofeng Wang, Chunfeng He, Ryongjin Kim, and Weiping Qin
Opt. Lett. 34(18) 2781-2783 (2009)

Ultraviolet-to-visible downconversion luminescence in solgel oxyfluoride glass ceramics containing Eu3+:GdF3 nanocrystals

Barbara Szpikowska-Sroka, Lidia Żur, Rozalia Czoik, Tomasz Goryczka, Maria Żądło, and Wojciech A. Pisarski
Opt. Lett. 39(11) 3181-3184 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, Fundamentals of Plastic Optical Fibers (Wiley, 2015).
  2. M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
    [Crossref]
  3. C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
    [Crossref]
  4. P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
    [Crossref]
  5. I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
    [Crossref]
  6. I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
    [Crossref]
  7. I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
    [Crossref]
  8. J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
    [Crossref]
  9. M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
    [Crossref]
  10. J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
    [Crossref]
  11. S. Abrate, Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, C. DeCusatis, ed., 4th ed. (Elsevier, 2013), pp. 37–54.
  12. A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
    [Crossref]
  13. A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
    [Crossref]
  14. A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
    [Crossref]
  15. G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
    [Crossref]
  16. M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
    [Crossref]
  17. J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
    [Crossref]
  18. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001).
    [Crossref]
  19. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed. (Marcel Dekker, Inc., 2001).
  20. D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
    [Crossref]
  21. R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.
  22. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
    [Crossref]
  23. H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
    [Crossref]
  24. H. Liang and F. Xie, “Photoluminescence study of a europium (III) complex containing 1, 5-styrylacetylacetone ligands,” Spectrochim. Acta A 77, 348–350 (2010).
    [Crossref]
  25. K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347–2356 (2002).
    [Crossref]
  26. G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
    [Crossref]
  27. H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
    [Crossref]
  28. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
    [Crossref]
  29. C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, and L. R. Dalton, “Rare-earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997).
    [Crossref]
  30. H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fibers,” Opt. Lett. 29, 477–479 (2004).
    [Crossref]
  31. H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
    [Crossref]
  32. Z. Zheng, H. Ming, X. Sun, J. Yang, D. Zhang, and J. Xie, “Study of Eu(DBM)3phen-doped optical polymer waveguides,” J. Opt. Soc. Am. B 22, 820–824 (2005).
    [Crossref]
  33. K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
    [Crossref]
  34. T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
    [Crossref]
  35. O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
    [Crossref]
  36. I. Ayesta, “Study of active polymer optical fibres to improve their performance as lasers and amplifiers,” Ph.D. thesis (University of the Basque Country UPV/EHU, 2013).
  37. I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
    [Crossref]

2018 (2)

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

2017 (2)

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

2016 (2)

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

2013 (1)

2011 (1)

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

2010 (1)

H. Liang and F. Xie, “Photoluminescence study of a europium (III) complex containing 1, 5-styrylacetylacetone ligands,” Spectrochim. Acta A 77, 348–350 (2010).
[Crossref]

2008 (3)

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

2005 (2)

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

Z. Zheng, H. Ming, X. Sun, J. Yang, D. Zhang, and J. Xie, “Study of Eu(DBM)3phen-doped optical polymer waveguides,” J. Opt. Soc. Am. B 22, 820–824 (2005).
[Crossref]

2004 (2)

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
[Crossref]

H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fibers,” Opt. Lett. 29, 477–479 (2004).
[Crossref]

2002 (2)

K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347–2356 (2002).
[Crossref]

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

2001 (3)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001).
[Crossref]

D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
[Crossref]

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

2000 (2)

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

1998 (1)

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

1997 (1)

1996 (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

1995 (2)

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

1993 (1)

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

1991 (1)

M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[Crossref]

1964 (1)

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

Abrate, S.

S. Abrate, Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, C. DeCusatis, ed., 4th ed. (Elsevier, 2013), pp. 37–54.

Alves, S.

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Aly, M. H.

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

Arrospide, E.

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

Arrue, J.

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001).
[Crossref]

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Ayesta, I.

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

I. Ayesta, “Study of active polymer optical fibres to improve their performance as lasers and amplifiers,” Ph.D. thesis (University of the Basque Country UPV/EHU, 2013).

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Bazzana, L.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Bikandi, I.

Bradley, D. D. C.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Brecher, C.

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

Brito, H. F.

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Brophy, V.

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

Cabanillas-Gonzalez, J.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Caspary, R.

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Chan, W.-K. E.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

Chen, B.

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fibers,” Opt. Lett. 29, 477–479 (2004).
[Crossref]

Cheng, X.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Chu, P. L.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

Cichosch, A.

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Clark, J.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

da Silva, E. F.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Dalton, L. R.

de Mello Donegá, C.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

de Sá, G. F.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed. (Marcel Dekker, Inc., 2001).

Ding, J.-L.

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

Dirk, C.

M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[Crossref]

Doroszb, D.

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

Durana, G.

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

Evert, R.

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Everta, R.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Fujii, K.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

García, O.

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

Garito, A. F.

Gonçalves e Silva, F. R.

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Granpayeh, N.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
[Crossref]

Guarrotxena, N.

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

Guo, F.

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

Hanafy, S. A. E. R. S.

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

Hasegawa, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

He, J.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Ilarramendi, M. A.

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Illarramendi, M. A.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

Jakobs, F.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Jiang, C.

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

Jiang, G.

Jiménez, F.

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Jin, Z.

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

Johannes, H.-H.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Johns, W. E.

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

Karimi, M.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
[Crossref]

Kawai, H.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Kielhorna, J.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Kim, J.-J.

D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
[Crossref]

Kinoshita, T.

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Kobayashi, T.

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

Kochanowicz, M.

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

Koeppen, C.

Koike, Y.

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347–2356 (2002).
[Crossref]

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Y. Koike, Fundamentals of Plastic Optical Fibers (Wiley, 2015).

Kowalsky, W.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Kuriki, K.

K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347–2356 (2002).
[Crossref]

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

Kuzyk, M. G.

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[Crossref]

Lanzani, G.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Lempicki, A.

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

Li, Z.

Liang, H.

H. Liang and F. Xie, “Photoluminescence study of a europium (III) complex containing 1, 5-styrylacetylacetone ligands,” Spectrochim. Acta A 77, 348–350 (2010).
[Crossref]

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fibers,” Opt. Lett. 29, 477–479 (2004).
[Crossref]

Lidzey, D. G.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Liu, M.

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

Longo, R. L.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Lu, C.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Luo, F.

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

Malta, O. L.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Menezes, J. F. S.

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Miluski, P.

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

Ming, H.

Mohamed, A. E.-N. A. E. G.

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

Möhl, S.

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Moravvej-Farshi, M.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
[Crossref]

Morgado, J.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Nakamura, K.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Nihei, E.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Nishihara, S.

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

Nishizawa, Y.

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

Nocivelli, A.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Oh, D.

D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
[Crossref]

Okamoto, Y.

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

Paek, U.

M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[Crossref]

Parola, I.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

Peng, G. D.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

Rashed, A. N. Z.

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

Recart, F.

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

Samelson, H.

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

Santa-Cruz, P. A.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Sasaki, K.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Savovic, S.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Schütz, S.

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Simas, A. M.

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Song, N.

D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
[Crossref]

Sun, X.

Tagaya, A.

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Tam, H.-Y.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Teramoto, S.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

Tse, M.-L. V.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Tsoi, W. C.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Tsukahara, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Virgili, T.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Wada, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Wai, P.-K. A.

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Welker, D. J.

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

Whitbread, T. W.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

Xia, R.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

Xie, F.

H. Liang and F. Xie, “Photoluminescence study of a europium (III) complex containing 1, 5-styrylacetylacetone ligands,” Spectrochim. Acta A 77, 348–350 (2010).
[Crossref]

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

Xie, J.

Xiong, Z.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

Xu, J.

Yamada, S.

Yamamoto, T.

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[Crossref]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Yang, J.

Yasuda, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Zaremba, D.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Zhang, D.

Zhang, Q.

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fibers,” Opt. Lett. 29, 477–479 (2004).
[Crossref]

Zhang, Z.

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

Zhao, H.

Zheng, Z.

Zmojda, J.

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

Zubia, J.

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, I. Bikandi, A. Tagaya, and Y. Koike, “Amplified spontaneous emission in graded-index polymer optical fibers: theory and experiment,” Opt. Express 21, 24254–24266 (2013).
[Crossref]

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001).
[Crossref]

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Adv. Opt. Mater. (1)

J. He, W.-K. E. Chan, X. Cheng, M.-L. V. Tse, C. Lu, P.-K. A. Wai, S. Savovic, and H.-Y. Tam, “Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback,” Adv. Opt. Mater. 6, 1701187 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387–396 (2004).
[Crossref]

Appl. Phys. Lett. (3)

M. G. Kuzyk, U. Paek, and C. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[Crossref]

H. Samelson, A. Lempicki, C. Brecher, and V. Brophy, “Room-temperature operation of a europium chelate liquid laser,” Appl. Phys. Lett. 5, 173–174 (1964).
[Crossref]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[Crossref]

Chem. Phys. Lett. (1)

O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Gonçalves e Silva, C. de Mello Donegá, and S. Alves, “Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide),” Chem. Phys. Lett. 282, 233–238 (1998).
[Crossref]

Chem. Rev. (1)

K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347–2356 (2002).
[Crossref]

Coord. Chem. Rev. (1)

G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Electron. Lett. (1)

K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike, “Fabrication and optical properties of neodymium-, praseodymium- and erbium- chelates-doped plastic optical fibres,” Electron. Lett. 37, 415–417 (2001).
[Crossref]

Fibers (1)

I. Parola, E. Arrospide, F. Recart, M. A. Illarramendi, G. Durana, N. Guarrotxena, O. García, and J. Zubia, “Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications,” Fibers 5, 28 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B-doped polymer optical-fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215–2220 (1995).
[Crossref]

J. Appl. Phys. (1)

C. Jiang, M. G. Kuzyk, J.-L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92, 4–12 (2002).
[Crossref]

J. Appl. Polym. Sci. (1)

H. Liang, B. Chen, Q. Zhang, Z. Zheng, H. Ming, and F. Guo, “Amplified spontaneous emission of Eu(DBM)3phen doped step-index polymer optical fiber by end-pumping with a YAG,” J. Appl. Polym. Sci. 98, 912–916 (2005).
[Crossref]

J. Lightwave Technol. (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[Crossref]

J. Lumin. (1)

I. Parola, M. A. Illarramendi, J. Arrue, I. Ayesta, F. Jiménez, J. Zubia, A. Tagaya, and Y. Koike, “Characterization of the optical gain in doped polymer optical fibres,” J. Lumin. 177, 1–8 (2016).
[Crossref]

J. Nanophoton. (1)

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton. 2, 023504 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

P. Miluski, M. Kochanowicz, J. Zmojda, and D. Doroszb, “Properties of Eu3+ doped poly(methyl methacrylate) optical fiber,” Opt. Eng. 56, 027106 (2017).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001).
[Crossref]

Opt. Lett. (1)

Optik (1)

A. N. Z. Rashed, A. E.-N. A. E. G. Mohamed, S. A. E. R. S. Hanafy, and M. H. Aly, “A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections,” Optik 127, 9259–9263 (2016).
[Crossref]

Polymers (1)

J. Arrue, F. Jiménez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers 3, 1162–1180 (2011).
[Crossref]

Proc. SPIE (2)

D. Oh, N. Song, and J.-J. Kim, “Plastic optical amplifier using europium complex,” Proc. SPIE 4282, 1–9 (2001).
[Crossref]

T. Kobayashi, K. Kuriki, S. Nishihara, Y. Okamoto, and Y. Koike, “Rare earth-doped polymer optical fibers for optical amplification,” Proc. SPIE 3942, 158–166 (2000).
[Crossref]

Solar Energy Mater. Sol. Cells (1)

I. Parola, D. Zaremba, R. Everta, J. Kielhorna, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.-H. Johannes, “High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers,” Solar Energy Mater. Sol. Cells 178, 20–28 (2018).
[Crossref]

Spectrochim. Acta A (2)

H. Liang, F. Xie, M. Liu, Z. Jin, F. Luo, and Z. Zhang, “Luminescence studies of europium chelates with increasing benzene ring substituents ligand-doped polymer,” Spectrochim. Acta A 71, 588–591 (2008).
[Crossref]

H. Liang and F. Xie, “Photoluminescence study of a europium (III) complex containing 1, 5-styrylacetylacetone ligands,” Spectrochim. Acta A 77, 348–350 (2010).
[Crossref]

Thin Solid Films (1)

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516, 2376–2381 (2008).
[Crossref]

Other (6)

R. Caspary, S. Möhl, A. Cichosch, R. Evert, S. Schütz, and H.-H. Johannes, “Eu-doped polymer fibers,” in 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.

Y. Koike, Fundamentals of Plastic Optical Fibers (Wiley, 2015).

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed. (Marcel Dekker, Inc., 2001).

S. Abrate, Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, C. DeCusatis, ed., 4th ed. (Elsevier, 2013), pp. 37–54.

I. Ayesta, “Study of active polymer optical fibres to improve their performance as lasers and amplifiers,” Ph.D. thesis (University of the Basque Country UPV/EHU, 2013).

I. Ayesta, F. Jiménez, J. Arrue, J. Zubia, and M. A. Ilarramendi, “Polimerozko zuntz optiko dopatuen erabilera, laser eta anplifikagailu gisa,” EKAIA ale berezia (special volume), 121–135 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Energy levels and transitions of typical coordination complexes of Eu 3 + .
Fig. 2.
Fig. 2. Europium complexes (a) AC46 and (b) AC56.
Fig. 3.
Fig. 3. Spectral attenuation coefficients for three POF samples doped with different europium complexes or with different concentrations. The relative shapes were provided by a spectrometer, and absolute values were estimated from measurement of the attenuation of light launched from a He–Ne laser ( λ = 633    nm ) and also from a 379 nm laser diode, by using the cut-back technique in both cases.
Fig. 4.
Fig. 4. Normalized fluorescence spectra of two typical europium complexes (AC46 and AC56) pumped at 350 nm, measured by the authors from the preforms of the 500 ppm doped fibers.
Fig. 5.
Fig. 5. Calculation of signal gain as the quotient between the area of the output signal over the ASE baseline and the area of the input signal. General parameters as in Table 1. Fiber length: L = 0.3    m .
Fig. 6.
Fig. 6. Dependence of signal gain on the temporal width of the pump pulse for a constant pump energy density. General parameters as in Table 1. Fiber length: L = 0.3    m . Dopant concentration = 4000    ppm .
Fig. 7.
Fig. 7. Optimum fiber length for a constant pump energy density. General parameters as in Table 1. Dopant concentration = 4000    ppm .
Fig. 8.
Fig. 8. Influence of using the optimum fiber length instead of a fixed one. General parameters as in Table 1. Fiber length: L = 0.3    m . Dopant concentration = 4000    ppm .
Fig. 9.
Fig. 9. Evolution of the generated power along the two AC46-doped POFs: (a) 500 ppm and (b) 50 ppm. Simulation parameters as in Tables 1 and 2. Solid line: computational results from the complete rate equations. Dashed line: results predicted by the simplified model formulated by Eq. (5). Point marked with “X”: length for maximum P ( z ) , which is 0.736 m in (a) and 7.232 m in (b).
Fig. 10.
Fig. 10. Evolution of the generated power along the 500 ppm AC56-doped POF (solid line). Parameters as in Tables 1 and 2. Point marked with “X”: length for maximum P ( z ) , which is 0.38 m. The power curve corresponding to the 500 ppm AC46-doped POF is also included.
Fig. 11.
Fig. 11. Gains calculated for multiple pump wavelengths maintaining the fiber length L (2 m), which is greater than or equal to the optimum one in all cases. The solid line corresponds to the AC56-doped POF, whose α p is higher, and the dashed line to the AC46-doped POF, whose α p is lower. The dopant concentration is 500 ppm in both cases.
Fig. 12.
Fig. 12. Lengths that maximize the peak of the output power for each of the two 500 ppm-doped fibers in Table 2, calculated for multiple pump wavelengths. Remaining simulation parameters as in Table 1.

Tables (2)

Tables Icon

Table 1. Simulation Parameters for a Typical Europium-Chelate-Doped POF Amplifier

Tables Icon

Table 2. Specific Differentiating Parameters of 50 ppm and 500 ppm Samples Considered for Theoretical Comparisons

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PUMP-POWER    PROPAGATION : P p z = σ a ( N N T ) P p absorption 1 v z P p t propagation ,
RATE EQUATION FOR N D : N D t = N D τ D F spontaneous decay σ e h c λ s A core N D P stimulated decay + W E T N N D N N T energy transfer from    T W B T N N T N ( 1 W 2 / W B T ) N D energy transfer from    D ,
GENERATED-POWER    PROPAGATION : P z = σ e N D P stimulated emission + N D τ D F h c λ s β A core spontaneous emission 1 v z P t propagation α P attenuation    at    λ s ,
RATE EQUATION FOR N T : N T t = N T τ T S 0 spontaneous decay + σ a h c λ p A core ( N N T ) P p absorption W E T N N D N N T energy    transfer    from    T + W B T N N T N N D energy    transfer    to    T .
P p t ( i + 1 , j ) P p ( i + 1 , j ) P p ( i , j ) d t , P p z ( i + 1 , j ) P p ( i + 1 , j + 1 ) P p ( i + 1 , j ) d z , N T t ( i , j + 1 ) N T ( i + 1 , j + 1 ) N T ( i , j + 1 ) d t , N D t ( i , j + 1 ) N D ( i + 1 , j + 1 ) N D ( i , j + 1 ) d t , P t ( i + 1 , j ) P ( i + 1 , j ) P ( i , j ) d t , P z ( i + 1 , j ) P ( i + 1 , j + 1 ) P ( i + 1 , j ) d z .
P ( z ) = N D ( h c / λ s ) A core β τ D F ( σ e N D α ) [ exp ( ( σ e N D α ) ( z z 0 ) ) 1 ] ,
d P d z = ( σ e N D P α ) P + N D τ D F h c λ s β A core .
d P d z = k 1 P + k 2 .
P ( z ) k 2 k 1 + C 1 exp ( k 1 z ) ,
P ( z ) = N D ( h c / λ s ) A core β τ D F ( σ e N D α ) [ exp ( ( σ e N D α ) z ) 1 ] .

Metrics