Abstract

In this article, non-classical properties of Raman modes are investigated. The original goal, actually, is to identify how and by which method we can induce non-classicality in Raman modes. We introduce a plasmonic system in which Raman dye molecules are buried between two shells of the plasmonic materials, similar to an onion-like core/shell nanoparticle. This system is excited by the entangled two-photon wave, followed by analysis of its dynamics of motion using the Heisenberg–Langevin equations by which the time evolution of the signal-idler mode and Raman modes are derived. Interestingly, the entangled two-photon wave is coupled to the plasmonic modes, which are used to improve the non-classicality. It is shown that the exciting system with the entangled photons leads to inducing the non-classicality in Raman modes and entanglement between them. Moreover, it is seen that the plasmon–plasmon interaction in the gap region has a strong effect on the non-classicality of the input modes and also affects entangling of the Raman modes, which means that plasmonic modes generated by the core/shell nanoparticles manipulate the Raman modes’ quantum properties. It is shown that the quantum properties in the designed system are dramatically influenced by the environmental temperature and the location of the Raman molecules in the gap region. The modeling results demonstrate that by changing the location of the Raman molecules, the non-classicality of the Raman modes and their entanglement are altered. Finally, as an important result, it is revealed that the Raman modes, such as the Stokes and anti-Stokes modes, show a revival behavior, which is a quantum phenomenon.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum plasmonics: new opportunity in fundamental and applied photonics

Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao
Adv. Opt. Photon. 10(4) 703-756 (2018)

Scheme for enhancing quadripartite entangled optical modes from an opto-mechanical system

Jing Zhang, Xiaoyu Liu, Rongguo Yang, and Tiancai Zhang
J. Opt. Soc. Am. B 35(12) 2945-2951 (2018)

Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi
J. Opt. Soc. Am. B 29(9) 2297-2308 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics