Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single-frequency microwave imaging with dynamic metasurface apertures

Abstract

Conventional microwave imaging schemes, enabled by the ubiquity of coherent sources and detectors, have traditionally relied on frequency bandwidth to retrieve range information, while using mechanical or electronic beamsteering to obtain cross-range information. This approach has resulted in complex and expensive hardware when extended to large-scale systems with ultrawide bandwidth. Relying on bandwidth can create difficulties in calibration, alignment, and imaging of dispersive objects. We present an alternative approach using electrically large, dynamically reconfigurable, metasurface antennas that generate spatially distinct radiation patterns as a function of tuning state. The metasurface antenna consists of a waveguide feeding an array of metamaterial radiators, each with properties that can be modified by applying a voltage to diodes integrated into the element. By deploying two of these apertures, one as the transmitter and one as the receiver, we realize sufficient spatial diversity to alleviate the dependence on frequency bandwidth and obtain range and cross-range information using measurements at a single frequency. We experimentally demonstrate this proposal by using two 1D dynamic metasurface apertures and reconstructing various 2D scenes (range and cross-range). Furthermore, we modify a conventional reconstruction method—the range migration algorithm—to be compatible with such configurations, resulting in an imaging system that is efficient in software and hardware. The imaging scheme presented in this paper has broad application to radio frequency imaging, including security screening, through-wall imaging, biomedical diagnostics, and synthetic aperture radar.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Application of range migration algorithms to imaging with a dynamic metasurface antenna

Laura Pulido-Mancera, Thomas Fromenteze, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Matthew Reynolds, and David Smith
J. Opt. Soc. Am. B 33(10) 2082-2092 (2016)

Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies

Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Jonah N. Gollub, and David R. Smith
J. Opt. Soc. Am. B 33(6) 1098-1111 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.