Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On optical tunneling in near-field diffraction of light from a small hole

Not Accessible

Your library or personal account may give you access

Abstract

A quantitative theory describing optical tunneling effects related to near-field diffraction of light from a small hole in a flat screen is established. We show that in the absence of local-field corrections, optical tunneling (i.e., the possibility of detecting photons in front of the “light cone”) in near-field diffraction appears solely via the longitudinal Green tensor, GL, and the space-like part of the retarded transverse propagator, GTspace. It is demonstrated that GTspace in the space-time domain can be written as a product of an electrostatic point-dipole tensor and a time factor, which obeys microcausality and is nonvanishing only in front of a plane “light cone.” Special attention is devoted to an analysis of the tunneling of an electromagnetic pulse of finite duration through a small hole in a thin screen. In this particular case, the tunneling signal in the point of observation arises from a somewhat complicated interplay between the time interval in which the effective aperture current density is nonvanishing and the time it takes for the elementary trailing edges of the individual space-like wavelets to pass the observation point. To achieve a self-consistent description of the tunneling process, we propose to use a certain spatially nonlocal and linear constitutive equation. In this equation, which is an improved version of those used up to now in diffraction theory, only the transverse part of the electric field occurs because the induced longitudinal field is not a dynamical variable in electrodynamics. Finally, we suggest to measure the optical tunneling related to small hole diffraction via a modified frustrated total internal reflection tunneling experiment, and we indicate how it might be possible to extend the present theory to single-photon diffraction tunneling.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical tunneling: a fingerprint of the lack of photon localizability

Ole Keller
J. Opt. Soc. Am. B 18(2) 206-217 (2001)

Attached and radiated electromagnetic fields of an electric point dipole

Ole Keller
J. Opt. Soc. Am. B 16(5) 835-847 (1999)

Propagation of the twin-beam state from the near field to the far field

Justinas Galinis and Ondřej Haderka
J. Opt. Soc. Am. B 34(11) 2406-2413 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (91)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.