Abstract

A stable and self-starting femtosecond breathing-pulse Yb-fiber oscillator is reported, mode-locked using the nonlinear polarization evolution mechanism. A bifurcation between two distinct modes of operation is demonstrated experimentally, producing pulses with a single central wavelength in one state, or following adjustment of the intracavity waveplates, the emission of pulses with three distinct central wavelengths. The maximum bandwidth was 72 nm at the -10 dB level, and the pulses were compressible externally to 70 fs with energies of 0.75 nJ. The multiwavelength pulses reported here are significantly shorter than the picosecond pulses previously observed from similar mode-locked multiwavelength sources. Vector simulations based on the nonlinear Schrödinger equation show that the multiwavelength behavior is produced by overdriving the nonlinear polarization evolution-based saturable absorber at the peak of the pulse, leading to transmission of the two wings of the strongly chirped pulse. This new insight shows clearly that the three pulses output in the multiwavelength state are coherent. The agreement between simulation and experimental data shows nonlinear polarization evolution-based mode-locked fiber lasers are a suitable platform for studying the nonlinear dynamics underlying the bifurcation of the output.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror

Claude Aguergaray, Neil G. R. Broderick, Miro Erkintalo, Jocelyn S. Y. Chen, and Vladimir Kruglov
Opt. Express 20(10) 10545-10551 (2012)

External cavity multiwavelength semiconductor mode-locked lasers gain dynamics

Luis C. Archundia and Peter J. Delfyett
Opt. Express 14(20) 9223-9237 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription