Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Kerr effect in hybrid plasmonic waveguides

Not Accessible

Your library or personal account may give you access

Abstract

Hybrid plasmonic waveguides, in which light is guided by a combination of dielectric and plasmonic confinement, are likely to play a key role in compact nonlinear optical devices. Although their absorption loss is considerable, through a small device footprint and careful optimization, a significant nonlinear phase shift may be achieved. Here, we study the Kerr effect in hybrid plasmonic waveguides by analyzing the modal effective area, energy velocity, absorption loss, and a weighted average of the constituents’ nonlinear refractive indices to gain physical insight into its behavior. We pinpoint the nonlinear contribution as the predominant factor in achieving a large third-order susceptibility and discuss its limitations. By providing a deep understanding of hybrid plasmonic waveguides for nonlinear applications, we indicate pathways for their future optimization.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization

Alexandros Pitilakis and Emmanouil E. Kriezis
J. Opt. Soc. Am. B 30(7) 1954-1965 (2013)

Sensitive method for measuring third order nonlinearities in compact dielectric and hybrid plasmonic waveguides

F. J. Diaz, T. Hatakeyama, J. Rho, Y. Wang, K. O’Brien, X. Zhang, C. Martijn de Sterke, B. T. Kuhlmey, and S. Palomba
Opt. Express 24(1) 545-554 (2016)

Mid-infrared nonlinear silicon hybrid waveguide with high figure of merit

Zhihua Tu, Qiang Jin, Xibin Li, and Shiming Gao
J. Opt. Soc. Am. B 35(8) 1772-1779 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.