Abstract

We review the current trends in the design of Huygens’ metasurfaces (HMSs), which are planar arrays of balanced electric and magnetic polarizable particles (meta-atoms) of subwavelength size. We focus on schemes that follow the equivalence principle, as these can be rigorously incorporated into Maxwell’s equations, leading to design specifications in the form of (electric and magnetic) surface-impedance distributions. The advantages of this approach with respect to the more common phase-shift stipulation approach are highlighted and discussed. We present a (microscopic) methodology to associate a general meta-atom configuration with an equivalent surface impedance, and derive metasurface (macroscopic) design procedures for various beam forming applications. The methods and concepts developed in the paper provide the basic tools for understanding and designing scalar, passive, and lossless HMSs, and we indicate possible extensions applicable to more complex structures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D plasmonic design approach for efficient transmissive Huygens metasurfaces

Bryan Adomanis, D. Bruce Burckel, and Michael Marciniak
Opt. Express 27(15) 20928-20937 (2019)

Electromagnetic metasurfaces: physics and applications

Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, and Lei Zhou
Adv. Opt. Photon. 11(2) 380-479 (2019)

Huygens’ optical vector wave field synthesis via in-plane electric dipole metasurface

Hyeonsoo Park, Hansik Yun, Chulsoo Choi, Jongwoo Hong, Hwi Kim, and Byoungho Lee
Opt. Express 26(8) 10649-10660 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription