Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electron excitation in thin metal films due to the magnetic field of ultrashort laser pulses

Not Accessible

Your library or personal account may give you access

Abstract

The behavior of the conduction-band electrons in a metal film subjected to the action of an ultrashort laser pulse at normal incidence is analyzed quantum-mechanically. The pulse duration is assumed to be shorter than the electron mean free time. It is shown for the first time that electrons in the film can be excited resonantly to the higher-energy quantum well levels due to the action of the magnetic field of the wave. The numerical analysis is conducted for an electron which is initially in the lowest quantum well and has a quasi-momentum directed along the electric field. It is shown that the excitation probability due to the magnetic-field excitation mechanism can be even larger than the excitation probability due to the inverse bremsstrahlung in electron–phonon collisions.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse

Nils Brouwer and Bärbel Rethfeld
J. Opt. Soc. Am. B 31(11) C28-C35 (2014)

Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse

E. G. Gamaly and A. V. Rode
J. Opt. Soc. Am. B 31(11) C36-C43 (2014)

Spectral dependence of the magnetic modulation of surface plasmon polaritons in permalloy/noble metal films

V. G. Kravets, P. Yu. Kurioz, and L. V. Poperenko
J. Opt. Soc. Am. B 31(8) 1836-1844 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.