Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pockels’ coefficients of alumina in aluminosilicate optical fiber

Not Accessible

Your library or personal account may give you access

Abstract

The photoelastic constants of the alumina component in aluminosilicate optical fibers are evaluated and determined to be p11=0.237±0.020 and p12=0.027±0.012, thus confirming that the low and negative pij characteristics of bulk alumina are conserved as part of a binary aluminosilicate glass system in optical fiber form. In order to enumerate these values, the strain- and stress-optic coefficients of two fibers (one with an aluminosilicate core and one with a pure silica core) were measured by applying mechanical tension or twist, respectively, to the fibers and measuring changes to an optical system as a function of the mechanical deformation. In the former, the strain-optic coefficient (εOC) is measured directly by recording changes to the free spectral range of a ring fiber laser. In the latter, the stress-optic coefficient (σOC) is found by measuring the change in polarization angle after linearly polarized light propagates through a segment of twisted test fiber. To the best of our knowledge, this is the first such measurement of its type, i.e., the retrieval of the component photoelastic constants, with their signs, of a multicomponent glass. Binary glass compositions wherein the constituents have opposite signs of the photoelastic constant (such as the aluminosilicates) have the potential to give rise to extremely low values of the Brillouin gain coefficient.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Brillouin scattering properties of lanthano–aluminosilicate optical fiber

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster
Appl. Opt. 53(25) 5660-5671 (2014)

Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M.C. Paul
Opt. Mater. Express 2(11) 1641-1654 (2012)

Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers

Dan Grobnic, Stephen J. Mihailov, John Ballato, and Peter D. Dragic
Optica 2(4) 313-322 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved