Abstract

Amplitude–phase spectra of IR waves tunneling through a gradient dielectric nanophotonic barrier, found in the framework of an exactly solvable model of this medium, are used for optimization of superluminal reshaping of tunneling pulses. This barrier, characterized by a cut-off frequency Ω, determined by the shape of distribution of refractive index across the barrier, provides the tunneling regime for waves whose frequencies are less than Ω. In a spectral range, located nearby this cut-off frequency Ω, an almost reflectionless tunneling of these waves occurs, accompanied by large strongly dispersive phase shifts. These shifts outstrip in some spectral range the phase shifts accumulated by the same harmonics along the same way in free space. Depending on the detuning between the pulse carrier frequency ω0 and Ω, the interplay between superluminal (tunneling) and subluminal (transparent) harmonics results in an ultrafast reshaping of the transmitted waveform, yielding a pulse spatial broadening, formation of superluminal precursors at the front edge of the transmitted pulse, and the splitting of the pulse’s maximum, while the displacement of the center of gravity of reshaped pulse stays subluminal.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Incidence-angle selection and spatial reshaping of terahertz pulses in optical tunneling

M. T. Reiten, K. McClatchey, D. Grischkowsky, and R. A. Cheville
Opt. Lett. 26(23) 1900-1902 (2001)

Energy storage in superluminal barrier tunneling: Origin of the “Hartman effect”

Herbert G. Winful
Opt. Express 10(25) 1491-1496 (2002)

On the apparent superluminality of evanescent waves

Vera L. Brudny and W. Luis Mochán
Opt. Express 9(11) 561-566 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription