Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Zero-velocity solitons in high-index photonic crystal fibers

Not Accessible

Your library or personal account may give you access

Abstract

Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-light modes in a solid core chalcogenide PCF are used to parameterize the model, which is shown to support standing and moving spatial solitons. Inclusion of Raman scattering slows down moving solitons exponentially, so that the zero-velocity soliton becomes an attractor state. An analytical expression for the deceleration rate that compares favorably with the numerical results is derived. Collisions of successive solitons due to the Raman deceleration are studied numerically, and it is found that the soliton interaction is mostly repulsive, as expected from the established theory of fiber solitons.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Jesper Lægsgaard, "Zero-velocity solitons in high-index photonic crystal fibers: erratum," J. Opt. Soc. Am. B 28, 432-432 (2011)
https://opg.optica.org/josab/abstract.cfm?uri=josab-28-3-432

More Like This
Trapping of slow solitons by longitudinal inhomogeneity in high-index photonic crystal fibers

Jesper Lægsgaard
J. Opt. Soc. Am. B 28(11) 2617-2624 (2011)

Zero-velocity solitons in high-index photonic crystal fibers: erratum

Jesper Lægsgaard
J. Opt. Soc. Am. B 28(3) 432-432 (2011)

Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans
J. Opt. Soc. Am. B 27(11) 2328-2335 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.