Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

A technique for numerically simulating second-order nonlinear interactions of light waves modulated spatially and temporally in both amplitude and phase in a uniaxial medium with arbitrary polarization and propagation directions is presented. A three-dimensional grid technique that automatically adapts grid parameters to the evolving sampled amplitudes by means of an analytical fit function is described. By means of spatiotemporal split-step fast-Fourier-transform propagation, diffraction and group-velocity dispersion can be included. We employ this technique for femtosecond noncollinear white-light-seeded parametric amplification in experimental designs presented earlier [Opt. Lett. 22, 1494 (1997); Opt. Lett. 23, 1283 (1998)]. The dependence of phase mismatch on signal wavelength provides a quantitative measure of the achromaticity of phase matching. Our results indicate that the pump pulse characteristics and not phase mismatching limit the amplification and the bandwidth of the parametric amplifier.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter

T. Wilhelm, J. Piel, and E. Riedle
Opt. Lett. 22(19) 1494-1496 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.