Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation

Not Accessible

Your library or personal account may give you access

Abstract

A model and numerical solutions of Maxwell’s equations describing the propagation of short, solitonlike pulses in nonlinear dispersive optical media are presented. The model includes linear dispersion expressed in the time domain, a Kerr nonlinearity, and a coordinate system moving with the group velocity of the pulse. Numerical solutions of Maxwell’s equations are presented for circularly polarized and linearly polarized electromagnetic fields. When the electromagnetic fields are assumed to be circularly polarized, numerical solutions are compared directly with solutions of the nonlinear Schrödinger (NLS) equation. These comparisons show good agreement and indicate that the NLS equation provides an excellent model for short-pulse propagation. When the electromagnetic fields are assumed to be linearly polarized, the propagation of daughter pulses, small-amplitude pulses at three times the frequency of the solitonlike pulse, are observed in the numerical solution. These daughter pulses are shown to be the direct result of third harmonics generated by the main, solitonlike, pulse.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Perfect optical solitons: spatial Kerr solitons as exact solutions of Maxwell's equations

Alessandro Ciattoni, Bruno Crosignani, Paolo Di Porto, and Amnon Yariv
J. Opt. Soc. Am. B 22(7) 1384-1394 (2005)

Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations

Peter M. Goorjian and Yaron Silberberg
J. Opt. Soc. Am. B 14(11) 3253-3260 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (77)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved