Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ho:Tm:YLF laser amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

A series of models is developed that describes a Ho:Tm laser, and predictions from these models are compared with experimental measurements for a variety of Ho:Tm:YLF amplifiers. Modeling is complicated by the plethora of required parameters needed to describe the dynamics of the Ho:Tm laser system versus the paucity of measured parameters. To remedy this, calculations presented here begin with measured energy levels and a quantum-mechanical model to determine a set of crystal-field parameters that are then used to calculate the energy-transfer parameters. Energy-transfer parameters, which describe the dynamics of energy exchange in the Ho:Tm system, are subsequently used in a rate-equation model to describe the dynamics of the lowest four manifolds of both Ho and Tm. Next, predictions of the rate-equation model are used in an amplifier model, which, among other effects, includes the variation of the pump energy density with the position of the probe beam in the amplifier. Results of the amplifier model are then compared with small-signal gain measurements from a variety of Ho:Tm:YLF laser amplifiers. Finally, the models are used to investigate the ultimate performance of a Ho:Tm:YLF laser amplifier by varying the concentrations of Ho and Tm in addition to the length of the end-pumped device.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Ho:Ho upconversion: applications to Ho lasers

Norman P. Barnes, Brian M. Walsh, and Elizabeth D. Filer
J. Opt. Soc. Am. B 20(6) 1212-1219 (2003)

Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies

Didier Bruneau, Stéphane Delmonte, and Jacques Pelon
Appl. Opt. 37(36) 8406-8419 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.