Abstract

The performance of a photon-address, subplane implementation of the triple-correlation (TC) algorithm is evaluated for application to near-real-time, stellar speckle imaging at low-light levels. A simple least-squares relaxation algorithm for recovering object phase from the bispectrum is proposed and found to be consistently better than the usual recursive method. Photon-address speckle data from six simulated objects of different degrees of complexity, and from the binary stars β Del and μ Ori, were used in this study. For real-time applications for which computational efficiency is critical, the relaxed two-plane TC algorithm offers excellent performance and rugged-ness with respect to object complexity.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase errors in near-axis bispectral stellar image reconstruction

Julian Meng and George J. M. Aitken
J. Opt. Soc. Am. A 11(6) 1736-1747 (1994)

Triple-correlation and Knox–Thompson stellar image reconstruction at high signal levels

Julian Meng and George J. M. Aitken
J. Opt. Soc. Am. A 12(2) 284-290 (1995)

Knox–Thompson and triple-correlation imaging through atmospheric turbulence

G. R. Ayers, M. J. Northcott, and J. C. Dainty
J. Opt. Soc. Am. A 5(7) 963-985 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription