Abstract

The maximum flicker frequency was determined over a 5+6-log-unit range of retinal illuminance for a stimulus configuration designed to isolate the linear response from long-wavelength (R) cones. For a particular retinal location, the data conformed to the Ferry–Porter law and departed significantly from the predictions of the diffusion equation. The slope of the function was an invariant characteristic and was unaffected by stimulus intensity or area, modulation waveform, or modulation amplitude. However, the slope varied substantially with retinal locus, increasing by more than a factor of 2 between the foveola and 35° eccentricity. This increase shows that the time constant of the linear, unadapted visual response decreases with increasing eccentricity. The difference between foveola and periphery remained at high spatial frequencies, implying that it was not attributable to lateral inhibitory effects.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Eccentricity and the Ferry–Porter law

Christopher W. Tyler and Russell D. Hamer
J. Opt. Soc. Am. A 10(9) 2084-2087 (1993)

Analysis of visual modulation sensitivity. V. Faster visual response for G- than for R-cone pathway?

Russell D. Hamer and Christopher W. Tyler
J. Opt. Soc. Am. A 9(11) 1889-1904 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription