Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum derivation of K-distributed noise for finite 〈N

Not Accessible

Your library or personal account may give you access

Abstract

Semiclassical derivations of the fluctuations of light beams have relied on limiting procedures in which the average number, 〈N〉, of scattering elements, photons, or superposed wave packets approaches infinity. We show that the fluctuations of thermal light having a Bose–Einstein photon distribution and of light with an amplitude distribution based on the modified Bessel functions, Kα−1, which has been found useful in describing light scattered from or through turbulent media, may be derived with a quantum-mechanical analysis as the superposition of a random number, N, of single-photon eigenstates with finite 〈N〉. The analysis also provides the P representation for K-distributed noise. Generalizations of K noise are proposed. The factor-of-2 increase in the photon-number second factorial moment related to photon clumping in the Hanbury Brown–Twiss effect for thermal (Gaussian) fields is shown to arise generally in these random superposition models, even for non-Gaussian fields.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiply stochastic representations for K distributions and their Poisson transforms

Malvin C. Teich and Paul Diament
J. Opt. Soc. Am. A 6(1) 80-91 (1989)

Dynamic derivation of the weak-scattering K density

M.-O. Hongler
J. Opt. Soc. Am. A 5(10) 1649-1651 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved