Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation

Not Accessible

Your library or personal account may give you access

Abstract

A new family of exact solutions of the scalar Helmholtz equation is presented. The 0, 0 order of this family represents a new mathematical model for the fundamental mode of a propagating Gaussian beam. The family consists of nonseparable functions in the oblate spheroidal coordinate system and can easily by transformed into a different set of solutions in the prolate spheroidal coordinate system, where the 0, 0 order is a spherical wave. This transformation consists of two substitutions in the coordinate system parameters and represents a more general method of obtaining a Gaussian beam from a spherical wave than assuming a complex point source on axis. Finally, each higher-order member of the family of solutions possesses an amplitude consisting of a finite number of higher-order terms with a zero-order term that is Gaussian.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Exact nonparaxial beams of the scalar Helmholtz equation

Gustavo Rodríguez-Morales and Sabino Chávez-Cerda
Opt. Lett. 29(5) 430-432 (2004)

Scalar field of nonparaxial Gaussian beams

Z. Ulanowski and I. K. Ludlow
Opt. Lett. 25(24) 1792-1794 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (84)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.