Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep image enhancement for ill light imaging

Not Accessible

Your library or personal account may give you access

Abstract

Imaging in the natural scene under ill lighting conditions (e.g., low light, back-lit, over-exposed front-lit, and any combinations of them) suffers from both over- and under-exposure at the same time, whereas processing of such images often results in over- and under-enhancement. A single small image sensor can hardly provide satisfactory quality for ill lighting conditions with ordinary optical lenses in capturing devices. Challenges arise in the maintenance of a visual smoothness between those regions, while color and contrast should be well preserved. The problem has been approached by various methods, including multiple sensors and handcrafted parameters, but extant model capacity is limited to only some specific scenes (i.e., lighting conditions). Motivated by these challenges, in this paper, we propose a deep image enhancement method for color images captured under ill lighting conditions. In this method, input images are first decomposed into reflection and illumination maps with the proposed layer distribution loss net, where the illumination blindness and structure degradation problem can be subsequently solved via these two components, respectively. The hidden degradation in reflection and illumination is tuned with a knowledge-based adaptive enhancement constraint designed for ill illuminated images. The model can maintain a balance of smoothness and contribute to solving the problem of noise besides over- and under-enhancement. The local consistency in illumination is achieved via a repairing operation performed in the proposed Repair-Net. The total variation operator is optimized to acquire local consistency, and the image gradient is guided with the proposed enhancement constraint. Finally, a product of updated reflection and illumination maps reconstructs an enhanced image. Experiments are organized under both very low exposure and ill illumination conditions, where a new dataset is also proposed. Results on both experiments show that our method has superior performance in preserving structural and textural details compared to other states of the art, which suggests that our method is more practical in future visual applications.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust contrast enhancement method using a retinex model with adaptive brightness for detection applications

Rizwan Khan, Atif Mehmood, and Zhonglong Zheng
Opt. Express 30(21) 37736-37752 (2022)

Tuning-free and self-supervised image enhancement against ill exposure

Lu Li, Daoyu Li, Shuai Wang, Qiang Jiao, and Liheng Bian
Opt. Express 31(6) 10368-10385 (2023)

CODEN: combined optimization-based decomposition and learning-based enhancement network for Retinex-based brightness and contrast enhancement

Sangjae Ahn, Joongchol Shin, Heunseung Lim, Jaehee Lee, and Joonki Paik
Opt. Express 30(13) 23608-23621 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.