Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Unconventional circularly polarized Airy light-sheet spinner tweezers

Not Accessible

Your library or personal account may give you access

Abstract

Standard circularly polarized Airy light-sheets are synthesized by combining two dephased TE and TM wave fields, polarized in the transverse directions of wave propagation, respectively. Somewhat counterintuitively, the present analysis theoretically demonstrates the existence of unconventional circularly polarized Airy light-sheets, where one of the individual dephased wave fields is polarized along the direction of wave propagation. The vector angular spectrum decomposition method in conjunction with the Lorenz gauge condition and Maxwell’s equations allow adequate determination of the Cartesian components of the incident radiated electric field components. Subsequently, the Cartesian components of the optical time-averaged radiation force and torque can be determined and computed. The example of a subwavelength light-absorptive (lossy) dielectric sphere is considered based upon the dipole approximation method. The results demonstrate the emergence of negative force components, suggesting retrograde motion and spinning reversal depending on the polarization of the Airy light-sheet and its transverse scale and attenuation parameter. The results are important in the design of light-sheet spinner tweezers and applications involving optical switching and particle manipulation and rotation.

© 2021 Optical Society of America

Full Article  |  PDF Article

Corrections

12 March 2021: A typographical correction was made to Eq. (2).


More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.